تور لحظه آخری
امروز : دوشنبه ، 24 دی 1403    احادیث و روایات:  پیامبر اکرم (ص):زِنا، شش پيامد دارد: سه در دنيا و سه در آخرت. سه پيامد دنيايى‏اش اين است كه: ...
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

سایبان ماشین

دزدگیر منزل

اجاره سند در شیراز

armanekasbokar

armanetejarat

صندوق تضمین

Future Innovate Tech

پی جو مشاغل برتر شیراز

خرید یخچال خارجی

موسسه خیریه

واردات از چین

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

طراحی سایت تهران سایت

irspeedy

درج اگهی ویژه

تعمیرات مک بوک

دانلود فیلم هندی

قیمت فرش

درب فریم لس

خرید بلیط هواپیما

بلیط اتوبوس پایانه

تعمیرات پکیج کرج

پوستر آنلاین

بهترین وکیل کرج

بهترین وکیل تهران

خرید از چین

خرید از چین

تجهیزات کافی شاپ

خرید سرور اچ پی ماهان شبکه

کاشت ابرو طبیعی و‌ سریع

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

لوله و اتصالات آذین

قرص گلوریا

نمایندگی دوو در کرج

دوره آموزش باریستا

مهاجرت به آلمان

بورس کارتریج پرینتر در تهران

تشریفات روناک

نوار اخطار زرد رنگ

ثبت شرکت فوری

خودارزیابی چیست

فروشگاه مخازن پلی اتیلن

کلینیک زخم تهران

کاشت ابرو طبیعی

پارتیشن شیشه ای اداری

خرید غذای گربه

رزرو هتل خارجی

تولید کننده تخت زیبایی

مشاوره تخصصی تولید محتوا

سی پی کالاف

دوره باریستا فنی حرفه ای

چاکرا

استند تسلیت

تور بالی نوروز 1404

سوالات لو رفته آیین نامه اصلی

کلینیک دندانپزشکی سعادت آباد

پی ال سی زیمنس

دکتر علی پرند فوق تخصص جراحی پلاستیک

تجهیزات و دستگاه های کلینیک زیبایی

تعمیر سرووموتور

تحصیل پزشکی در چین

مجله سلامت و پزشکی

تریلی چادری

خرید یوسی

ساندویچ پانل

ویزای ایتالیا

مهاجرت به استرالیا

میز کنفرانس

 






آمار وبسایت

 تعداد کل بازدیدها : 1852933551




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

شکار اعداد اول


واضح آرشیو وب فارسی:تبیان: شکار اعداد اول
ریاضیات و امنیت اطلاعات
یکی از درخشان ترین کارهای بشر در نظریه ی اعداد، اثبات نامتناهی بودن اعداد اول بود که توسط اقلیدس صورت گرفت. امروزه می‌توان این اثبات را در کتاب های درسی دبیرستان دید که نمونه ای عالی از زیبایی و سادگی ریاضیات است.  یونانی‌ها اعداد اول را می‌شناختند و از نقش آن ‌ها به عنوان عوامل سازنده ی دیگر اعداد آگاه بودند. بعد از این دستاورد بزرگ، مهم ترین سؤالی که به ذهن بشر رسید این بود که: چه نظمی بر دنباله ی اعداد اول حاکم است؟ و چگونه می‌توان اعداد اول را یافت؟ و چه طور می‌توان اعدادی را که اول نیستند، به عوامل اول شان تجزیه کرد؟ شاید اولین پاسخ به این سؤال، غربال اراتستن بوده باشد. تا کنون تلاش های زیادی برای یافتن یک فرمول به منظور تولید اعداد اول و یا الگویی برای مشخص کردن اعداد اول در میان اعداد دیگر صورت گرفته است. این تلاش ها هر چند کمک زیادی به گسترش نظریه ی اعداد کرده اند، اما ساختار پیچیده ی اعداد اول هم چنان در مقابل این تلاش‌ها مقاومت می‌کند.  جستجو برای الگوهایی از نظم در اعداد اول   یک نمونه ساده: 31-331-3331-33331-333331-3333331-33333331 همه اول هستند. اما 333333331 حاصل ضرب دو عدد اول 17 و 19607843 است.   اعداد اول مرسن: اگرp اول باشد، اعدادی به شکل 2p-1 را عدد مرسن می گوییم. اگر این اعداد اول باشند، آن ها را عدد اول مرسن می‌ نامیم. به ازای p برابر 2 و 3 و  5 و 7 عدد مرسن ، اول است. اما اگرp را 11 بگیریم، عدد حاصل، مرکب است. تا امروز 39 عدد اول مرسن شناخته شده اند که آخرین آن ها 1  -213466917 است و 4053946 رقم دارد. یعنی بین 13466917 عدد، تنها 39 عدد وجود دارند که عدد اول مرسن تولید می‌کنند.   اعداد اول دوقلو : به اعداد اولی که پشت سر هم هستند، اعداد اول دوقلو می‌گوییم. مثلاً 3 و 5 و یا 11 و 13. هیچ کس نمی داند که پراکندگی این اعداد در میان سایر اعداد چگونه است و آیا تعداشان متناهی است یا خیر. بزگ ترین جفت شناخته شده 1+33218925.2169690 و 1-33218925.2169690 هستند.   برای یافتن اطلاعاتی راجع به جستجوی اعداد اول می‌توانید به این جا و یا سایت پروژهGIMPS مراجعه کنید.   از گذشته تشخیص اول بودن یک عدد و یافتن عوامل اول اعداد ذهن بشر را به خود مشغول کرده بود. امروزه می دانیم که اگر عدد مورد نظر را به ترتیب به همه ی اعداد کوچک تر از آن تقسیم کنیم، در صورتی که بر هیچ یک از اعداد بخش پذیر نباشد، عدد مورد نظر عدد اول است؛ و اگر بخش پذیر بود، به این ترتیب عوامل اول آن معلوم می‌شوند. با گذشت زمان این فرایند ساده تر شد. مثلاً امروزه می‌دانیم که تنها تقسیم کردن به همه ی اعداد کوچک تر از جذر عدد مورد نظر کافی است ( چرا؟ ). هم چنین در صورتی که اعداد اول کوچک تر از عدد مورد نظر شناخته شده باشند، تقسیم کردن به این اعداد نیز کافی است. این روش‌ها برای اعداد نسبتاً کوچک کار می‌کنند. اما زمانی که عددی مثلاً 100 رقمی در اختیار داریم، نمی توان از این روش ها استفاده کرد. حتی با سریع ترین کامپیوترها هم تقسیم کردن یک عدد 100 رقمی به همه ی اعداد کوچک تر از آن فرصتی بیش تر از عمر عالم را می طلبد.
ریاضیات و امنیت اطلاعات
  یک محاسبه ی سرانگشتی   فرض کنید بخواهیم یک عدد 100 رقمی را به همه ی اعداد کوچک تر از خودش تقسیم کنیم. برای این کار باید حدود 1099 تقسیم انجام دهیم. اگر کامپیوتر ما بتواند در هر ثانیه 1000 میلیارد یعنی 1012 تقسیم انجام دهد، برای انجام کل کار 1087 ثانیه وقت لازم است.   یک سال 31536000=3600×24×365 (حدود 108 ثانیه) ثانیه است. این یعنی کار ما 1079 سال طول خواهد کشید. عمر عالم حداکثر 15 میلیارد سال تخمین زده می‌شود. بنابراین یک دهم یا یک صدم یا یک هزارم این محاسبه هم غیر قابل انجام است.   حوالی قرن هفدهم توجه ریاضی دانان به این نکته جلب شد که شاید راه های ساده تری برای تشخیص اول بودن یک عدد وجود داشته باشد. زیرا روش تقسیم اطلاعات زیادی ( لیست عوامل اول، وقتی که جواب سؤال منفی است ) به دست می دهد که برای پاسخ گفتن به این سؤال نیازی به آن‌ها نیست. فرما مدتی بعد نشان داد که این حدس صحیح بوده است. فرما قضیه ای را ثابت کرد که تا امروز اساس همه ی روش های آزمایش اول بودن اعداد است و ما آن را با نام قضیه ی کوچک فرما می‌شناسیم.  قضیه‏ی کوچک فرما: اگرP عددی اول وb عدد دلخواهی باشد، آن گاه باقی مانده ی  تقسیم bp برP، همیشه برابرb است. بنابراین برای این که بدانیم عددی مثل a اول است یا نه، کافیست عدد دلخواهی مانند b انتخاب کنیم. سپس باقی مانده ی تقسیم ba بر a را بیابیم. اگر این باقی مانده برابر b نباشد، عدد ما اول نیست. تنها مشکلی که وجود دارد این است که از آن جا که عکس قضیه ی فرما لزوماً درست نیست - یعنی ممکن است بعضی از اعداد مرکب هم این خاصیت را داشته باشند - اگر باقی مانده برابر b نباشد، نمی توان گفت a اول است. این مشکل هم 300 سال بعد در سال 2004 توسط سه ریاضی دان هندی حل شد و حال می‌توانیم در کسری از ثانیه در مورد اول بودن عددی با 100 رقم اظهار نظر کنیم.  بعد از 2000 سال مسأله ی تشخیص اول بودن اعداد حل شد. اما مسأله ی یافتن عوامل اول هم چنان وجود دارد و کسی نمی داند آیا این مسأله راه حل ساده تری دارد یا نه. وقتی تلاش برای ساده تر کردن راه حل این مسأله به جایی نرسید، ریاضی دانان تصمیم گرفتند از پیچیدگی این مسأله برای ساختن روش های رمز نگاری استفاده کنند. هم اکنون کم تر از 30 سال از آغاز این تلاش می گذرد و امنیت پیچیده ترین سیستم های رمزنگاری عالم وابسته به سختی تجزیه ی اعداد بزرگ است و تلاش برای ایمن تر کردن این روش‌ها بخش عمده ای از وقت نظریه ی اعداد دان های دنیا را به خود اختصاص داده است. جالب است بدانید بزرگ ترین استخدام کننده ی ریاضی دان‌ها در دنیا آژانس ملی امنیت ایالات متحده آمریکاست. شاید دیگر کم تر نظریه ی اعداد دانی مایل به حل کردن مسأله ی تجزیه ی اعداد بزرگ باشد.   مقدمه امنیت اطلاعات امنیت اویلری  آزمایشگاه رمز نگاری   نویسنده: سید عباس موسوی 





این صفحه را در گوگل محبوب کنید

[ارسال شده از: تبیان]
[مشاهده در: www.tebyan.net]
[تعداد بازديد از اين مطلب: 3313]

bt

اضافه شدن مطلب/حذف مطلب







-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن