تور لحظه آخری
امروز : سه شنبه ، 25 دی 1403    احادیث و روایات:  امام سجاد (ع):خدايا به تو پناه مى برم از اين كه باطل را بر حق ترجيح دهم.
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

سایبان ماشین

دزدگیر منزل

اجاره سند در شیراز

armanekasbokar

armanetejarat

صندوق تضمین

Future Innovate Tech

پی جو مشاغل برتر شیراز

خرید یخچال خارجی

موسسه خیریه

واردات از چین

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

طراحی سایت تهران سایت

irspeedy

درج اگهی ویژه

تعمیرات مک بوک

دانلود فیلم هندی

قیمت فرش

درب فریم لس

خرید بلیط هواپیما

بلیط اتوبوس پایانه

تعمیرات پکیج کرج

بهترین وکیل تهران

خرید از چین

خرید از چین

تجهیزات کافی شاپ

خرید سرور اچ پی ماهان شبکه

کاشت ابرو طبیعی و‌ سریع

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

لوله و اتصالات آذین

قرص گلوریا

نمایندگی دوو در کرج

دوره آموزش باریستا

مهاجرت به آلمان

بورس کارتریج پرینتر در تهران

تشریفات روناک

نوار اخطار زرد رنگ

ثبت شرکت فوری

خودارزیابی چیست

فروشگاه مخازن پلی اتیلن

کلینیک زخم تهران

کاشت ابرو طبیعی

پارتیشن شیشه ای اداری

خرید غذای گربه

رزرو هتل خارجی

تولید کننده تخت زیبایی

مشاوره تخصصی تولید محتوا

سی پی کالاف

دوره باریستا فنی حرفه ای

چاکرا

استند تسلیت

تور بالی نوروز 1404

سوالات لو رفته آیین نامه اصلی

کلینیک دندانپزشکی سعادت آباد

پی ال سی زیمنس

دکتر علی پرند فوق تخصص جراحی پلاستیک

تجهیزات و دستگاه های کلینیک زیبایی

تعمیر سرووموتور

تحصیل پزشکی در چین

مجله سلامت و پزشکی

تریلی چادری

خرید یوسی

ساندویچ پانل

ویزای ایتالیا

مهاجرت به استرالیا

میز کنفرانس

 






آمار وبسایت

 تعداد کل بازدیدها : 1853310333




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

چند وجهی های منظم - بخش چهارم


واضح آرشیو وب فارسی:تبیان: چند وجهی های منظم - بخش چهارمدر این بخش می‌خواهیم به طور دقیق تصوری از چندضلعی هایی با کنج های مشخص، به دست آوریم و بدانیم که هر کدام چند وجه، چند ضلع یا چند رأس دارند. برای این کار باید رابطه ای بین تعداد عناصر سازنده ی یک چندوجهی یعنی رأس ‌ها، ضلع ‌ها و وجه ‌ها پیدا کنیم.  ( در هر چندضلعی تعداد رأس‌ها و ضلع‌ها برابر است. ) برای پیدا کردن این رابطه از دانش آموزان بخواهید این جدول را برای هر کدام از چندوجهی های زیر کامل کنند. و سعی کنند رابطه ای بین e‌ و f و n‌ پیدا کنند.
چند وجهی ها
   چندوجهی مورد نظر تعداد رأس‌ها n تعداد اضلاع e تعداد وجه‌ها f                زمانی را برای یافتن رابطه به آن‌ها فرصت دهید و سپس روی تخته یک ستون n-e+f اضافه کنید و به همراه دانش آموزان آن را پر کنید. این ستون برای همه ی چند وجهی ها باید برابر ۲ باشد. آیا دانش آموزان فکر می‌کنند رابطه ی n-e+f=۲ برای همه ی چندوجهی‌ها برقرار است؟ ( این رابطه را رابطه ی اویلر می گوییم. در حقیقت رابطه ی اویلر برای دسته ی وسیع تری از این شکل‌ ها، یعنی همه ی گراف های هم بند مسطح صادق است.)
چند وجهی های منظم - بخش چهارم
برای اثبات درستی این رابطه باید مسأله را کمی ساده تر کنیم. برای این منظور  آن را از حالت فضایی به روی صفحه منتقل می کنیم. توضیح دهید که چون این رابطه تنها به تعداد وجه‌ها و رأس‌ها و ضلع‌ها وابسته است، پس درستی آن با کشیدن ، فشار دادن و یا خم کردن چندوجهی تغییر نمی کند. یکی از وجه های چندوجهی را برمی داریم و شکل باقی مانده را مثل تصویر زیر روی صفحه باز می‌کنیم. ( می‌توانید با باز کردن یک چندوجهی کاغذی موضوع را روشن تر کنید. البته از آ ن جا که کاغذ کش نمی آید این کار مشکلاتی دارد و باید آن را برای دانش آموزان توضیح دهید. )
چند وجهی های منظم - بخش چهارم
به این ترتیب از هر چند وجهی به یک شکل روی صفحه می‌رسیم. البته دقت کنید که اگر در ابتدا وجه دیگری را حذف کنیم، ممکن است شکل متفاوتی به دست بیاوریم. ( به این شکل‌ها گراف می‌گویند. اگر فکر می‌کنید مطرح کردن این نام برای دانش آموزان مشکل ایجاد می کند، می‌توانید نامی از گراف نبرید ) از دانش آموزان بخواهید شکل حاصل از تخت کردن مکعب و هرم را رسم کنند. در طی این فرایند تعداد رأس‌ها و ضلع‌ها ثابت می‌ماند و تعداد وجه‌ها به اندازه ی یک عدد کم می‌شود. پس اگر ثابت کنیم در شکل به دست آمده رابطه n-e+f=۱  برقرار است، درستی رابطه ی اویلر را برای چندوجهی‌ها ثابت کرده ایم.
چند وجهی های منظم - بخش چهارم
به جای اثبات رابطه ی اویلر برای چندوجهی‌ها حکم کلی تری را اثبات می‌کنیم: ثابت می‌کنیم که برای یک شکل دلخواه k قسمتی رابطه ی n-e+f-k=0  برقرار است. از آن جا که شکل حاصل از یک چند وجهی، ۱ تکه است حکم مورد نظر ما به دست می آید. برای اثبات با یک شکل دلخواه شروع می‌کنیم. سپس گام به گام ضلع های آن را حذف می‌کنیم. همان طور که در شکل می‌بینید برای هر ضلع که حذف می‌کنیم، دو حالت ممکن است رخ دهد؛ یا مثل شکل های دوم و چهارم، این ضلع، دوتکه را به هم وصل کرده است که با حذف آن از مقدار e یک واحد کم شده و به مقدار k یک واحد اضافه می‌شود و یا مثل حالت های اول و سوم این ضلع از اضلاع یک وجه بوده است که با حذف آن یک واحد از e و f کم می‌شود. پس در هر دو حالت مقدار عبارت n-e+f-k بدون تغییر می‌ماند، تا جایی که همه ضلع‌ها حذف شوند و تنها n رأس باقی بماند، که در این حالت k=n و e=f=0 . بنابراین مقدار n-e+f-k برابر صفر می‌شود و چون در طول فرایند این مقدار تغییر نکرده است، پس در ابتدای کار هم برابر صفر بوده است. حال بر می‌گردیم به مشخص کردن چندوجهی های منتظم با کنج هایی که به دست آوردیم. قرار شد همه ی وجوه یک چندوجهی منتظم را چندضلعی های منتظم برابر با هم تشکیل دهند. به عبارت دیگر عدد ثابت m وجود دارد که به ازای آن همه ی وجه‌ها، m-ضلعی منتظم‌ هستند. هم چنین در هر کنج تعداد یکسانی ( مثلاً d ) وجه به هم می‌رسند. پس می‌توان رابطه ای بین n و e، تعداد رأس ها و ضلع ‌ها و m و d و f به دست آورد. e=m.f/2 هر وجه دقیقاً m ضلع دارد که هرکدام متعلق به ۲ وجه است و ۲ بار شمرده می‌شود.n=m.f/d هر وجه دقیقاً m رأس دارد و هر راس دقیقاً درd وجه ظاهر شده است. برای ملموس تر شدن قضیه می‌توانید با کمک دانش آموزان این کمیت‌ها را روی یک چندوجهی ساخته شده مثل مکعب، یا تصویر آن حساب کنید. حال باید این رابطه‌ها را در فرمول اویلر قرار دهیم. خواهیم داشت: 
چند وجهی های منظم - بخش چهارم
 و بعد از ساده کردن
چند وجهی های منظم - بخش چهارم
می دانیم که m و d فقط می‌توانند ۵ جفت مقداری را که قبلاً محاسبه کردیم، داشته باشند. با استفاده از فرمول بالا می‌توانیم جدول زیر را کامل کنیم و شکل چندوجهی های منتظم را بشناسیم. چند سطر از جدول را کامل کنید و از دانش آموزان بخواهید بقیه ی آن را کامل کنند. m=۳ d=۳n= e= f=۴ چهاروجهی m=۳ d=۴n= e= f=۸ هشت‌وجهی m=۳ d=۵n= e= f=۲۰ بیست‌وجهی m=۴ d=۳n=۸ e=۱۲ f=۶ شش‌وجهی یا مکعب m=۵ d=۳n= e= f=۱۲ دوازده‌وجهی حال می‌توانید با استفاده از ماکت های مقوایی یا تصاویر و یا نمونه های کامپیوتری چندوجهی های منتظم را به دانش آموزان معرفی کنید. در بخش بعد دانش آموزان در یک فعالیت گروهی یکی از این چندوجهی‌ها را می‌سازند. Applet زیر اجسام افلاطونی و ارشمیدسی را نمایش می‌دهد که با کلیک کردن روی نام هر شی می‌توانید آن را ببینید. به کمک تنظیمات موجود نیز می‌توانید نحوه ی نمایش را تغییر دهید. ۵ شی اول لیست، اجسام افلاطونی هستند.برای دیدن این بخش شما به نرم افزار جاوا نیاز دارید  بخش اول بخش دوم بخش سوم صفحه اصلی





این صفحه را در گوگل محبوب کنید

[ارسال شده از: تبیان]
[مشاهده در: www.tebyan.net]
[تعداد بازديد از اين مطلب: 9526]

bt

اضافه شدن مطلب/حذف مطلب







-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن