تور لحظه آخری
امروز : چهارشنبه ، 23 آبان 1403    احادیث و روایات:  پیامبر اکرم (ص):پروردگارم هفت چيز را به من سفارش فرمود: اخلاص در نهان و آشكار، گذشت از كسى كه ب...
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

صرافی ارکی چنج

صرافی rkchange

سایبان ماشین

دزدگیر منزل

تشریفات روناک

اجاره سند در شیراز

قیمت فنس

armanekasbokar

armanetejarat

صندوق تضمین

Future Innovate Tech

پی جو مشاغل برتر شیراز

لوله بازکنی تهران

آراد برندینگ

خرید یخچال خارجی

موسسه خیریه

واردات از چین

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

بازسازی ساختمان

طراحی سایت تهران سایت

irspeedy

درج اگهی ویژه

تعمیرات مک بوک

دانلود فیلم هندی

قیمت فرش

درب فریم لس

زانوبند زاپیامکس

روغن بهران بردبار ۳۲۰

قیمت سرور اچ پی

خرید بلیط هواپیما

بلیط اتوبوس پایانه

قیمت سرور dl380 g10

تعمیرات پکیج کرج

لیست قیمت گوشی شیائومی

خرید فالوور

پوستر آنلاین

بهترین وکیل کرج

بهترین وکیل تهران

اوزمپیک چیست

خرید اکانت تریدینگ ویو

خرید از چین

خرید از چین

تجهیزات کافی شاپ

نگهداری از سالمند شبانه روزی در منزل

بی متال زیمنس

ساختمان پزشکان

ویزای چک

محصولات فوراور

خرید سرور اچ پی ماهان شبکه

دوربین سیمکارتی چرخشی

همکاری آی نو و گزینه دو

کاشت ابرو طبیعی و‌ سریع

الک آزمایشگاهی

الک آزمایشگاهی

خرید سرور مجازی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

لوله و اتصالات آذین

 






آمار وبسایت

 تعداد کل بازدیدها : 1828807888




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

رسم پذیر بودن یک عدد


واضح آرشیو وب فارسی:راسخون:
رسم پذیر بودن یک عدد
رسم پذیر بودن یک عدد عدد a رو رسم پذیر گوییم اگر بتوان تنها با استفاده از خط کش و پرگار پاره خطی به طول a رسم کرد. و البته فرض ما بر این است که یک واحد طول داده شده باشد.* از این به بعد هر جا کلمه رسم پذیری آمد منظور همان رسم پذیری به وسیله خط کش و پرگار است.رسم پذیری بعضی عددها بسیار واضح است. مثلا ۱ و ۲ و … چون اینها ضریبهایی از واحد طول هستند. اما بعضی دیگر احتیاج به بررسی دارند مثل “رادیکال ۲”. آیا این عدد رسم پذیر است؟از دوران دبیرستان به یاد داریم که : از هر نقطه خارج یک خط مفروض می توان خطی عمود بر آن رسم کرد. اگر محل تلاقی این دو خط را مبدا در نظر بگیریم به این محور محور رسم پذیر می گوییم.در این محور:۱. (a,۰) یا (۰,a) را رسم پذیر گوییم اگر a رسم پذیر باشد.۲. (a,b) را رسم پذیر گوییم اگر a و b رسم پذیر باشند.هر شکلی را که روی این محور بتوان رسم کرد، اعم از پاره خط، دایره و… یک شکل رسم پذیر گوییم.++ اگر یک پاره خط در این محورها رسم کنیم، طول پاره خط عددی رسم پذیر است.حال می توانیم به راحتی بگوییم که “رادیکال۲” رسم پذیر است. چون اگر (۰.۱) و (۰و۱) رو روی محور به هم وصل کنیم بنابر قضیه فیثاغورث پاره خطی به طول “رادیکال۲″ داریم.حال سوالی که مطرح می شود این است که آیا همه اعداد رسم پذیرند؟ و اگر نه چه عددهایی رسم پذیرند و کدام ها رسم پذیر نیستند.همه عددها رسم پذیر نیستند و تعیین رسم پذیری آنها به کارهای تخصصی می انجامد اما حالا که مفهوم عدد رسم پذیر رو فهمیدیم چند حکم کلی درباره رسم پذیری رو هم بیان می کنیم:۱.اگر a و b رسم پذیر باشند آنگاه a+b , a-b , a.b , a/b نیز رسم پذیرند.۲.اگر a رسم پذیر باشد آنگاه “رادیکال a” نیز رسم پذیر است.۳.موارد زیر معادلند (یعنی اگر یکی از آنها در مورد یک عدد درست باشد دو تای دیگر نیز درستند):الف) x رسم پذیر است.ب) (Cos(x رسم پذیر است.ج) (Sin(x رسم پذیر است.۴.همه اعداد گویا (Q) رسم پذیر هستند.اکنون کار قضاوت در مورد رسم پذیری عددها خیلی ساده تر شد. تنها عددی ممکن است رسم پذیر نباشد که گنگ باشد. اما تعیین اینکه عدد گنگی رسم پذیر است یا نه دارای تکنیکهای ویژه ایست.چند حکم در مورد رسم پذیری اعداد با استفاده از میدان های شکافنده:۱.مجموعه همه عددهای رسم پذیر زیرمیدانی از میدان اعداد حقیقی ® است.۲.اگر a عددی رسم پذیر باشد آنگاه a در توسیعی از Q قرار دارد که درجه آن توسیع روی Q توانی از ۲ است.۳.(نتیجه ۲ و پر کاربرد تر از آن): اگر a در یک چندجمله ای تحویل ناپذیر روی Q صدق کند که درجه آن توانی از ۲ نباشد آنگاه a رسم پذیر نیست.۴.اگر a ریشه n-ام اولیه واحد باشد آنگاه n ضلعی منتظم رسم پذیر است اگر وفقط اگر درجه (Q(a روی Q توانی از ۲ باشد.۵.اگر P عددی اول باشد آنگاه P ضلعی منتظم رسم پذیر است اگر وفقط اگر P عدد اول فرما باشد.چند مساله تاریخی زیر هم که شاید از زمان اقلیدس وجود داشته و با استفاده از بحث رسم پذیری حل شدند در زیر می بیند:۱.آیا می توان به کمک خط کش و پرگار هر زاویه را به سه قسمت تقسیم کرد؟ (تثلیث زاویه)۲.آیا می توان مربعی هم مساحت با یک دایره دلخواه رسم کرد؟ (تربیع دایره)۳.آیا می توان برای هر مکعب دلخواه مکعبی رسم کرد که حجم آن دو برابر مکعب مفروض باشد؟ (تضعیف مکعب) تضعیف یعنی مضاعف کردن. یعنی دو برابر کردن.ثابت شده است که هیچ یک از این احکام در حالت کلی درست نیستند. مثلا “تثلیث زاویه ۶۰ درجه” و “تربیع دایره ای به شعاع یک” و “تضعیف مکعبی به ابعاد یک” ممکن نیست.منبع:http://www.academist.ir/خ





این صفحه را در گوگل محبوب کنید

[ارسال شده از: راسخون]
[مشاهده در: www.rasekhoon.net]
[تعداد بازديد از اين مطلب: 2042]

bt

اضافه شدن مطلب/حذف مطلب







-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن