تبلیغات
تبلیغات متنی
محبوبترینها
بارشهای سیلآسا در راه است! آیا خانه شما آماده است؟
بارشهای سیلآسا در راه است! آیا خانه شما آماده است؟
قیمت انواع دستگاه تصفیه آب خانگی در ایران
نمایش جنگ دینامیت شو در تهران [از بیوگرافی میلاد صالح پور تا خرید بلیط]
9 روش جرم گیری ماشین لباسشویی سامسونگ برای از بین بردن بوی بد
ساندویچ پانل: بهترین گزینه برای ساخت و ساز سریع
خرید بیمه، استعلام و مقایسه انواع بیمه درمان ✅?
پروازهای مشهد به دبی چه زمانی ارزان میشوند؟
تجربه غذاهای فرانسوی در قلب پاریس بهترین رستورانها و کافهها
دلایل زنگ زدن فلزات و روش های جلوگیری از آن
خرید بلیط چارتر هواپیمایی ماهان _ ماهان گشت
صفحه اول
آرشیو مطالب
ورود/عضویت
هواشناسی
قیمت طلا سکه و ارز
قیمت خودرو
مطالب در سایت شما
تبادل لینک
ارتباط با ما
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
آمار وبسایت
تعداد کل بازدیدها :
1835011127
شیمی چیست؟
واضح آرشیو وب فارسی:راسخون:
شیمی چیست؟ شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط میشود به عناصر شیمیایی و ترکیبات شیمیایی که شامل اتمها، مولکولها، و برهمکنش میان آنهاست.پیدایش دانش شیمی (Chemistry science)انسان از بدو خلقت که بناچار پیوسته با اشیای محیط زیست خود سرو کار پیدا کرد، با شناخت تدریجی نیازهای زندگی خویش و کسب اطلاعات بیشتری درباره خواص آنها ، آموخت که برای ادامه حیات خود به ناچار باید از آنها استفاده کند. با گذشت زمان دریافت که برای استفاده هر چه بیشتر و بهتر از این مواد ، باید در وضعیت و کیفیت آنها تغییراتی وارد کند. این کار با استفاده از گرما و بویژه کشف آتش بصورت عملی در آمده بود.آغاز دانش بشری را در واقع میتوان همان آغاز استفاده از آتش دانست. زیرا گرم کردن و پختن مواد و … ، تغییراتی شیمیایی میباشد و این خود نشان دهنده این واقعیت است که شیمی ، علمی است که در ارتباط با اولین و حیاتیترین نیازهای جامعه بشری بوجود آمده و برای برآورده کردن هر چه بیشتر این نیازها که روز به روز تنوع حاصل میکرد، توسعه و تکام یافته است.از آنجایی که شیمی ، علم تجربی است و بشر اولیه قبل از هر نوع تفکر و نظریه پردازی ساختار و چگونگی پیدایش مواد موجود در محیط زیست خود ، در اندیشه حفظ خود از سرما و آزمایشهای مربوط به گرما ، رفع گرسنگی و احتمالا دفاع از هستی خویش بوده و در راه دسترسی به چگونگی تغییر و تبدیل آنها به منظور استفاده هر چه بهتر و بیشتر از آنها قدم برمیداشت، بر همین اساس بود که بخش شیمی نظری خیلی دیرتر از بخش کاربردی آن آغاز شد و پیشرفت کرد.واژه شیمی خود داستان درازی دارد. ریشه این نام در واژه کیمیاست. خاستگاه واژه کیمیا را برخی از یونانی دانستهاند و چیستی کار کیمیاگری دگرساختن مس به طلا بود. این واژه و داستان دانش شگفت انگیز پشت آن به همراه دانشش به عربی وارد شد و اروپاییان با این واژه و دانش آن از راه عربها آشنا شدند و این دانش را با نام alchemy شناختند. آنگاه آن را در میان خود پروردند تا در سدههای نزدیک به ریخت فرانسه شیمی به زبان ما بازگشت. دانش شیمی به دو گرایش شیمی محض و شیمی کاربردی تقسیم میشود.نگاه گذراتیوری اتمی پایه و اساس علم شیمی است. این تیوری بیان میدارد که تمام مواد از واحدهای بسیار کوچکی به نام اتم تشکیل شدهاند. یکی از اصول و قوانینی که در مطرح شدن شیمی به عنوان یک علم تأثیر بهسزایی داشته، اصل بقای جرم است. این قانون بیان میکند که در طول انجام یک واکنش شیمیایی معمولی، مقدار ماده تغییر نمیکند. (امروزه فیزیک مدرن ثابت کرده که در واقع این انرژی است که بدون تغییر میماند و همچنین انرژی و جرم با یکدیگر رابطه دارند.)این مطلب به طور ساده به این معنی است که اگر دههزار اتم داشته باشیم و مقدار زیادی واکنش شیمیایی انجام پذیرد، در پایان ما همچنان بطور دقیق دههزار اتم خواهیم داشت. اگر انرژی از دست رفته یا بهدستآمده را مد نظر قرار دهیم، مقدار جرم نیز تغییر نمیکند. شیمی کنش و واکنش میان اتمها را به تنهایی یا در بیشتر موارد بههمراه دیگر اتمها و بهصورت یون یا مولکول (ترکیب) بررسی میکند.این اتمها اغلب با اتمهای دیگر واکنشهایی را انجام میدهند. (برای نمونه زمانیکه آتش چوب را میسوزاند واکنشی است بین اتمهای اکسیژن موجود در هوا و اتمهای کربن و هیدروژن درون چوب). گاهی نیز نور بر آنها(واکنش بین اتمها) تأثیر میگذارد(فتوکاتالیست). (یک عکس بر اثر دگرگونیهایی که نور بر روی مواد شیمیایی فیلم عکاسی ایجاد میکند شکل میگیرد.)یکی از یافتههای بنیادین و جالب دانش شیمی این بودهاست که اتمها رویهمرفته همیشه به نسبت برابر با یکدیگر ترکیب میشوند. سیلیس دارای ساختمانی است که نسبت اتمهای سیلیسیوم به اکسیژن در آن یک به دو است. امروزه ثابت شدهاست که استثناهایی در زمینهٔ قانون نسبتهای معین وجود دارد(مواد غیر استوکیومتری).یکی دیگر از یافتههای کلیدی شیمی این بود که زمانی که یک واکنش شیمیایی مشخص رخ میدهد، مقدار انرژی که بدست میآید یا از دست میرود همواره یکسان است. این امر ما را به مفاهیم مهمی مانند تعادل ، ترمودینامیک میرساند.شیمی فیزیک بر پایهٔ فیزیک پیشرفته (مدرن) بنا شدهاست. اصولاً میتوان تمام سیستمهای شیمیایی را با استفاده از تیوری مکانیک کوانتوم شرح داد. این تیوری از لحاظ ریاضی پیچیده بوده و عمیقاً شهودی است. به هر حال در عمل و بطور واقعی تنها بررسی سیستمهای سادهٔ شیمیایی قابل بررسی با مفاهیم مکانیکی کوانتوم امکانپذیر است و در اکثر مواقع باید از تقریب استفاده کرد(مانند تیوری کاری دانسیته). بنابراین درک کامل مکانیک کوانتوم برای تمامی مباحث شیمی کاربرد ندارد؛ زیرا نتایج مهم این تیوری (بخصوص اربیتال اتمی) با استفاده از مفاهیم سادهتری قابل درک و بهکارگیری هستند.با اینکه در بسیاری موارد ممکن است مکانیک کوانتوم نادیده گرفته شود، مفهوم اساسی که پشت آن است، یعنی کوانتومی کردن انرژی، چنین نیست. شیمیدانها برای بکارگیری کلیه روشهای طیف نمایی به آثار و نتایج کوانتوم وابستهاند، هرچند که ممکن است بسیاری از آنها از این امر آگاه نباشند. علم فیزیک هم ممکن است مورد بی توجهی واقع شود، اما به هر حال برآیند نهایی آن (مانند رزونانس مغناطیسی هستهای) پژوهیده و مطالعه میشود.یکی دیگر از تیوریهای اصلی فیزیک مدرن که نباید نادیده گرفته شود نظریه نسبیت است. این نظریه که از دیدگاه ریاضی پیچیدهاست، شرح کامل فیزیکی علم شیمی است. خوشبختانه مفاهیم نسبیتی تنها در برخی از محاسبات خیلی دقیق ساختمان هسته، بهویژه در عناصر سنگینتر، کاربرد دارند و در عمل تقریباً با شیمی پیوند ندارند.طبقهبندی علم شیمیشیمی محض یا شیمی نظریدرباره شناخت خواص و ساختار و ارتباط خواص و ساختار مواد و قوانین مربوط به آنها بحث میکند.شیمی عملی یا شیمی کاربردیراههای تهیه ، استخراج مواد خالص از منابع طبیعی ، تبدیل مواد به یکدیگر و یا سنتز آنها را مورد بررسی قرار میدهد.دامنه علم شیمیبدین ترتیب دامنه علم شیمی در زمینههای نظری و عملی فوقالعاده گسترش حاصل کرد و نقشهای حساس را در زندگی انسان به عهده گرفت. بطوری که امروزه میزان برخورداری هر جامعه از تکنولوژی شیمیایی ، معیار قدرت و ثروت و رفاه آن جامعه محسوب شده و بصورت جزیی از فلسفه زندگی در آمده است.بخشهای اصلی دانش شیمی عبارتاند از:▪ شیمی تجزیه، که به تعیین ترکیبات مواد و اجزای تشکیل دهنده آنها میپردازد.▪ شیمی آلی، که به مطالعهٔ ترکیبات کربندار، غیر از ترکیباتی چون دو اکسید کربن (دی اکسید کربن) میپردازد.▪ شیمی معدنی، که به اکثریت عناصری که در شیمی آلی روی آنها تاکید نشده و برخی خواص مولکولها میپردازد.▪ شیمی فیزیک، که پایه و اساس کلیهٔ شاخههای دیگر را تشکیل میدهد، و شامل ویژگیهای فیزیکی مواد و ابزار تیوری بررسی آنهاست.دیگر رشتههای مطالعاتی و شاخههای تخصصی که با شیمی پیوند دارند عبارتاند از: علم مواد، مهندسی شیمی، شیمی بسپار، شیمی محیط زیست و داروسازی.شاخههای شیمی▪ شیمی آلی▪ شیمی معدنی▪ شیمی تجزیه▪ شیمی فیزیک▪ سینتیک شیمیایی▪ تعادل شیمیایی▪ اسیدها و بازها▪ الکترو شیمی▪ زیستشیمی (بیوشیمی)▪ رادیو شیمیریشهیابیکلمه شیمی (انگلیسی:chemistry) در اصل از کلمه یونانی کیمِیا (χημεία) به معنای «به هم فشردن»، «با هم ساختن»، «جوش دادن» و «آلیاژ» و … گرفته شدهاست. همینطور میتواند از کلمه فارسی کیمیا به معنی «طلا» و کلمه فرانسوی alkemie یا عربی الکیمیا (هنر دگرگونی) گرفته شده باشد.علم شیمیشاخهای از علوم تجربی است که از یک سو درباره شناخت خواص ، ساختار و ارتباط بین خواص و ساختار مواد و قوانین مربوط به آنها بحث میکند. از سوی دیگر ، راههای تهیه ، استخراج مواد خالص از منابع طبیعی ، تبدیل مواد به یکدیگر و یا سنتز آنها به روشی که به صرفه مقرون باشد، مورد بحث و بررسی قرار میدهند. این علم با ترکیب و ساختار و نیروهایی که این ساختارها را برپا نگه داشته است، سروکار دارد.شرح تفصیلی درباره چگونگی واکنشها و سرعت پیشرفت آنها ، شرایط لازم برای فراهم آوردن تغییرات مطلوب و جلوگیری از تغییرات نامطلوب ، تغییرات انرژی که با واکنشهای شیمیایی همراه است، سنتز موادی که در طبیعت صورت میگیرد و آنهایی که مشابه طبیعی ندارند و بالاخره روابط کمی جرمی بین مواد در تغییرات شیمیایی در علم شیمی مورد مطالعه قرار میگیرد.سیر تکامی و رشداولین نظریه درباره ساختار مواد ، حدود ۴۰۰ سال قبل از میلاد توسط فلاسفه یونان بیان شد، در صورتی که شاخه کاربردی شیمی چندین هزار سال قبل از میلاد رواج داشت و قابلیت توجیه پیدا کرده بود. به چند مورد اشاره میکنیم.▪ طلا ، اولین فلزی بود که توسط بشر کشف شد و نقره پس از طلا کشف شد و در زندگی بشر کاربرد پیدا کرد.مس سومین فلزی بود که کشف شد. سرب ، قلع و جیوه بعد از مس و قبل از آهن کشف شدند.آهن به علت دشواریهایی که در استخراج آن وجود داشت، دیرتر از فلزات فوق کشف و مورد استفاده قرار گرفت.▪ ساختن شیشه رنگی (سبز و آبی) و شیشه بیرنگ در مصر و بینالنهرین و در کشورهای مجاور دریای اژه و دریای سیاه و تهیه بطریهای شیشهای در بینالنهرین متداول شد.▪ کوزهگری ، سفالگری و استفاده از لوحههای سفالی و تهیه لعاب و لعاب دادن ظروف سفالی در مصر و بینالنهرین متداول شد.▪ تهیه پارچههای نخی ، ابریشمی و پشمی و رنگرزی آنها با رنگهای نیلی ارغوانی و قرمز و … رواج یافت. رنگ قرمز از حشرهای به نام قرمزدانه ، رنگ نیلی از گیاهی بنام ایندیگو و رنگ بنفش از جانور دریایی بدست آمد.▪ دباغی پوست با استفاده از زاجها ، تهیه الکل ، سرکه ، روغن ، مومیا و استخراج نمک از آب دریا انجام گرفت. شیمی تجزیههدف یک تجزیه شیمیایی ، فراهم آوردن اطلاعاتی درباره ترکیب نمونهای از یک ماده است. در بعضی موارد اطلاعات کیفی در مورد حضور یا عدم حضور یک یا چند جزء در نمونه کافی است. در مواردی دیگر ، اطلاعات کمی مورد نظر است. بدون در نظر گرفتن هدف نهایی ، اطلاعات مورد نیاز در انتها ، توسط اندازه گیری یکی از خواص فیزیکی بدست میآیند که این خاصیت بطور مشخص به جزء یا اجزاء سازنده مورد نظر مربوط است. زمینههای تاریخی تجریه کیفی به ابتکار «پروفسور رونالد بلچر» که به نارساییهای متعدد سیستمهای تجزیه کیفی معدنی موجود پی برده و تصمیم به اصلاح این سیستمها از طریق تحقیقات تجربی و به بحث گذاشتن موضوع در یک گروه از آنالیستهای باتجربه گرفته بود، موسسه MAQA (موسسه تجزیه کیفی میدلندز) تاسیس شد. هدفهای موسسه عبارت بود از تهیه طرحهایی برای توصیه در: ▪ بررسی سیستماتیک کاتیونهای معمولی مبتنی بر روشهای کلاسیک جا افتاده. ▪ بررسی آنیونها. ▪ بررسی عناصر غیر معمول. ▪ بررسی نامحلولها. طرح MAQA یکی از سلسله سیستمهای تجزیه کیفی هدف است که برخی از آنها به قرن هیجدهم برمیگردد. طرحهای قدیمیتر از بعضی جهات جالباند، به این معنی که بسیاری از جداسازیها و واکنشهای انتخابی که هنوز هم جای خود را در اعمال تجزیه کیفی حفظ کردهاند، از آنها نشات گرفته است. نیاز مبرم به تشخیص سنگها و مواد معدنی مفید موجب پدید آمدن تجزیه کیفی معدنی شد. در نتیجه ، در جاهایی که صنایع پیشرفته استخراج شکوفا میشد، این هنر رشد سریعی کرد که نمونه بارز آن ، در سوئد بود. بدون آن که حق سایر بنیانگذاران تجزیه را فراموش کرده باشیم، شیمیدان سوئدی به نام «توربون برگمن» را ممکن است بتوان بعنوان بنیانگذار تجزیه کیفی سیستماتیک معرفی کرد. رده بندی روشهای تجزیهای رده بندی روشهای تجزیهای معمولا بر طبق خاصیتی است که در فرآیند اندازه گیری نهایی مشاهده میشود. در جدول زیر فهرستی از مهمترین این خاصیتها و همچنین نام روشهایی که مبتنی بر این خاصیتها میباشند، دیده میشود. بر این نکته توجه داشته باشیم که تا حدود سال ۱۹۲۰ تقریبا تمام تجزیهها براساس دو خاصیت جرم و حجم قرار داشتند. در نتیجه ، روشهای وزنی و حجمی به نام روشهای کلاسیک تجزیهای شهرت یافتهاند. بقیه روشها شامل روشهای دستگاهی است. علاوه بر تاریخ توسعه این روشها ، جنبههای معدودی روشهای دستگاهی را از روشهای کلاسیک جدا و متمایز میسازند. بعضی از تکنیکهای دستگاهی حساستر از تکنیکهای کلاسیک میباشند. ولی بعضیها حساستر نیستند. با ترکیب خاصی از عناصر یا ترکیبات ، یک روش دستگاهی ممکن است بیشتر اختصاصی باشد. در مواردی دیگر ، یک روش حجمی یا وزنی ، کمتر در معرض مزاحمت قرار دارد. مشکل است که گفته شود که کدامیک از نظر صحت ، راحتی و صرف زمان بر دیگری برتری دارد. همچنین این مساله درست نیست که روشهای دستگاهی ، الزاما دستگاههای گرانتر یا پیچیدهتری را بکار میگیرند و در حقیقت ، استفاده از یک ترازوی خودکار نوین در یک تجزیه وزنی شامل دستگاه ظریفتر و پیچیدهتری در مقایسه با بسیاری از روشهای دیگری است که در جدول زیر ثبت شدهاند. روشهای تجزیهای مبتنی بر اندازه گیری خاصیت خاصیت فیزیکی که اندازه گیری میشود. وزنی جرم حجمی حجم طیف نورسنجی (اشعه ایکس ، ماوراء بنفش ، مرئی ، IR)؛ رنگ سنجی ؛ طیف بینی اتمی ؛ رزونانس مغناطیسی هسته و رزونانس اسپین الکترون جذب تابش طیف بینی نشری (اشعه ماوراء بنفش ، ایکس ، مرئی)؛ نور سنجی شعلهای؛ فلوئورسانس (اشعه ایکس ، فرابنفش و مرئی) ؛ روشهای رادیوشیمیایی نشر تابش کورسنجی ، نفلومتری ، طیف بینی رامان پراکندن تابش شکست سنجی و تداخل سنجی شکست تابش روشهای پراش اشعه ایکس و الکترون پراش تابش قطبش سنجی ، پاشندگی چرخش نوری و دو رنگی نمایی دورانی چرخش تابش پتانسیل سنجی ، پتانسیل سنجی با زمان پتانسیل الکتریکی رسانا سنجی رسانایی الکتریکی پلاروگرافی ، تیتراسیونهای آمپرسنجی جریان الکتریکی کولن سنجی کمیت الکتریسیته طیف سنجی جرمی نسبت جرم به بار روشهای رسانایی حرارتی و آنتالپی خواص گرمایی روشهای جداسازی در بیشتر موارد ، تجزیه یک نمونه از ماده ، قبل از اندازه گیری فیزیکی نهایی آن ، ابتدا احتیاج به یک یا چند مرحله زیر دارد: نمونه برداری ، برای فراهم کردن نمونهای که ترکیب آن ، نماینده توده ماده باشد. تهیه و انحلال مقدار معینی از نمونه جداسازی گونه مورد اندازه گیری از اجزاء سازندهای که در سنجش نهایی مزاحمت ایجاد میکنند. این مراحل معمولا بیشتر از خود اندازه گیری نهایی تولید مزاحمت میکنند و خطاهای بزرگتری را باعث میشوند. روشهای جداسازی به این دلیل مورد احتیاجاند که خواص فیزیکی و شیمیایی مناسب برای اندازه گیری غلظت معمولا بین چندین عنصر یا ترکیب مشترک است. در بررسی مواد بسیار نزدیک و مرتبط به هم ، مشکل جداسازی بیشترین اهمیت را مییابد و لذا نیاز به تکنیکهایی نظیر کروماتوگرافی ، تقطیر جزء به جزء، استخراج ناهمسو و یا الکترولیز در پتانسیل کنترل شده دارد. انتخاب روش برای یک مسئله تجزیهای جدول مذکور ، حاکی از این است که برای شیمیدانی که با یک مسئله تجزیهای روبرو است، غالبا روشهای متعددی وجود دارند که وی میتواند یکی از آنها را انتخاب کند. مدت زمانی که او باید برای کار تجزیه صرف کند و کیفیت نتایج حاصل ، بنحوی حساس ، به این انتخاب بستگی دارد. شیمیدان برای اخذ تصمیم خود در مورد انتخاب روش ، باید پیچیدگی ماده مورد تجزیه ، غلظت گونه مورد نظر ، تعداد نمونههایی که باید تجزیه شوند و دقت مورد نیاز را در نظر گیرد. پس از این ، انتخاب وی به دانش او در مورد اصول اساسی که زیر بنای هر یک از این روشهای قابل دسترسی است و در نتیجه قدرت و محدودیت این روشها بستگی خواهد داشت. دستگاهوری در تجزیه در مفهومی بسیار وسیع ، یک دستگاه که برای تجزیه شیمیایی مورد استفاده قرار میگیرد، دادههای کمی تولید نمیکند، بلکه در عوض بسادگی اطلاعات شیمیایی را به شکلی تبدیل میکند که آسانتر قابل مشاهده است. بنابراین به دستگاه میتوان به صورت یک وسیله ارتباطی نگریست. دستگاه این هدف را در مراحل مختلف زیر انجام میدهد: ▪ تولید یک علامت ▪ تبدیل این علامت به علامتی با ماهیت متفاوت (تبدیل نامیده میشود). ▪ تقویت علامت تبدیل شده ارائه این علامت به صورت یک جابجایی بر روی یک صفحه مندرج یا صفحه یک ثبات. لزومی ندارد که تمام این مراحل مجموعا در هر دستگاه انجام گیرد. در نتیجهٔ ظهور این همه مدارات الکترونیکی در آزمایشگاه ، یک شیمیدان امروزی خود را با این سوال روبرو میبیند که چه مقدار الکترونیک باید بداند تا بتواند موثرترین استفاده را از وسایل موجود برای تجزیه ، بکند. مهم برای یک شیمیدان این است که قسمت عمده کوشش خود را به اصول شیمیایی ، اندازه گیریها و محدودیتها و قوتهای ذاتی آن معطوف دارد.شیمی آلیشیمی آلی بخشی از دانش شیمی است که بررسی هیدروکربنها میپردازد. به همین دلیل به آن شیمی ترکیبات کربن نیز گفته میشود . پسوند «آلی» یادگار روزهایی است که مواد شیمیایی را بسته به این که از چه منبعی به دست میآمدند، به دو دسته معدنی و آلی تقسیم میکردند.مواد معدنی آنهایی بودند که از معادن استخراج میشدند و مواد آلی آنهایی که از منابع گیاهی یا حیوانی یعنی از موادی که توسط موجودات زنده تولید میشدند، به دست میآمدند.در واقع تا پیرامون سال ۱۸۵۰ بسیاری از شیمیدانان معتقد بودند، که خاستگاه مواد آلی باید موجودات زنده باشند و در نتیجه این مواد را هرگز نمیتوان از مواد معدنی سنتز نمود.موادی که از منابع آلی به دست میآیند، در یک خصوصیت مشترکند: همه آنها دارای عنصر کربن هستند.حتی پس از آن که مشخص شد این مواد لزوماً نبایستی از منابع زنده به دست آیند و میتوان آنها را در آزمایشگاه سنتز کرد، باز هم مناسبت داشت تا نام آلی برای توصیف آنها و موادی همانند آنها حفظ شود. این تقسیمبندی بین مواد معدنی و آلی تا به امروز حفظ شده است.امروزه اگر چه هنوز بسیاری از ترکیبات کربن به آسانی از منابع گیاهی و جانوری بدست میآیند، ولیکن بسیاری از آنها نیز سنتز میشوند. از ترکیبات گاهی از مواد معدنی مانند کربناتها و سیانیدها سنتز میشوند ولی غالباً از سایر مواد آلی تهیه میگردند.دو منبع بزرگ مواد آلی که از آنها مواد آلی ساده تأمین میشوند، نفت و ذغال سنگ است. (هر دو اینها از مفهوم قدیمی «آلی» بوده و فراورده تجزیه (کافت) گیاهان و جانوران هستند). این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگتر و پیچیدهتر مصرف میشوند.نفت و زغال سنگ سوختهای فسیلی هستند که در طی هزاران سال بر روی هم انباشته شده وغیر قابل جایگزینی هستند. این مواد — بویژه نفت — جهت رفع نیازهای انرژی که به طور دایم در حال افزایش است، با سرعت خطرناکی مصرف میگردند. امروزه کمتر از ۱۰٪ نفت برای ساختن مواد شیمیایی مصرف میشود و قسمت اعظم آن برای تولید انرژی سوزانده میشود. خوشبختانه منابع دیگری برای ایجاد نیرو از قبیل منبع خورشیدی، گرمای زمین، باد، امواج، جزر و مد و انرژی هستهای وجود دارد.اما چگونه میتوان منبع دیگری به جای مواد آلی پیدا نمود؟ البته در نهایت باید به جایی که سوختهای سنگوارهای از آنجا ناشی میشوند یعنی توده زیستی برگشت نمود، اما این بار به طور مستقیم و بدون دخالت هزاران سال. توده زیستی قابل تجدید است و چنانچه به طور مناسب مصرف شود، تا زمانی که ما بر روی این سیاره بتوانیم وجود داشته باشیم آن هم باقی میماند. در ضمن میگویند که نفت با ارزشتر از آن است که سوزانده شود.چه خصوصیتی در ترکیبات کربن وجود دارد که آنها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز میسازد؟ لااقل قسمتی از این جواب به نظر میرسد که چنین باشد: تعداد بسیار زیادی از ترکیبات کربن وجود دارند که مولکولهای آنها میتوانند بسیار بزرگ و پیچیده باشد.تعداد ترکیباتی که دارای کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن است. این مواد آلی در خانوادههای مختلف قرار میگیرند، و معمولاً در بین مواد معدنی، همتایی ندارند.مولکولهای آلی شامل هزاران اتم شناخته شدهاند، و ترتیب قرار گرفتن اتمها حتی در مولکولهای نسبتاً کوچک بسیار پیچیده است. یکی از مسایل اصلی در شیمی آلی، آگاهی از طرز قرار گرفتن اتمها در مولکولها و یا تعیین ساختمان ترکیبات است.راههای زیادی برای شکستن این مولکولهای پیچیده و یا نوآرایی آنها برای ایجاد مولکولهای جدید وجود دارد؛ روشهای مختلفی برای اضافه نمودن اتمهای جدید به این مولکولها و یا جایگزین نمودن اتمهای جدید به جای اتمهای قدیم وجود دارد. بخش کلان شیمی آلی به پژوهش در مورد این واکنشها اختصاص دارد، یعنی تشخیص این که این واکنشها کدامند، چگونه انجام میشوند و چگونه میتوان از آنها برای سنتز یک ترکیب دلخواه استفاده نمود.اتمهای کربن میتوانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر بپیوندند. اتمهای کربن میتوانند زنجیرهایی شامل هزاران اتم و یا حلقههایی با اندازههای متفاوت ایجاد نمایند؛ زنجیرها و حلقهها میتوانند دارای شاخه و پیوندهای عرضی باشند. به اتمهای کربن این زنجیرها و حلقهها، اتمهای دیگری که عمدتاً هیدروژن و همچنین فلویور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتمهای گوناگون میپیوندد.هر آرایش مختلف از اتمها مربوط به ترکیب متفاوتی است، و هر ترکیب یک رشته ویژگیهای شیمیایی و فیزیکی ویژه خود را دارد. از این رو غیرمنتظره نیست که امروزه بیشتر از ده میلیون ترکیب شناخته شده کربن وجود داشته باشد و هر سال به این تعداد نیم میلیون ترکیب تازه افزوده گردد. تعجبآور نیست که بررسی این ترکیبات، رشته ویژهای را در شیمی به خود اختصاص دهد.شیمی آلی اهمیت فوقالعاده زیادی در تکنولوژی دارد و در واقع، شیمی رنگدانهها و داروها، کاغذ و جوهر، رنگهای نقاشی و پلاستیکها، بنزین و تایرهای لاستیکی است؛ همچنین، شیمی غذایی است که میخوریم و لباسی است که میپوشیم.شیمی آلی شالوده زیستشناسی و پزشکی است. ساختمان موجودات زنده، به غیر از آب، عمدتاً از مواد آلی ساخته شدهاند؛ مولکولهای مورد بحث در زیستشناسی مولکولی همان مولکولهای آلی هستند. زیستشناسی در مقیاس مولکولی همان شیمی آلی است.شاید دور از انتظار نباشد که بگوییم ما در عصر کربن زندگی میکنیم. هر روزه، روزنامهها ذهن ما را متوجه ترکیبات کربن نظیر کلسترول و چربیهای اشباع نشده، هورمونها و استروییدها، حشرهکشها و فرومونها، عوامل سرطانزا و شیمی درمانی، DNA و ژنها مینمایند. به خاطر نفت، جنگها به راه افتاده است.وقوع دو فاجعه بشریت را تهدید میکند و هر دو ناشی از تجمع ترکیبات کربن در جو است؛ یکی نازک شدن لایه ازون که عمدتاً به واسطه وجود کلروفلویورو کربنها است و دیگری پدیده گلخانه که به خاطر حضور متان، کلروفلویور و کربنها و سرآمد همه کربن دیاکسید است.شاید به همین مناسبت بوده است که مجله Science در سال ۱۹۹۰، الماس را که یکی از فرمهای آلوتروپی کربن است به عنوان مولکول سال انتخاب کرده است. و مولکول آلوتروپ تازهیاب فولرن باکمینستر کربن ۶۰ (buckminsterfullerene-C۶۰) است که هیجان بسیاری را در دنیای شیمی ایجاد کرده است، هیجانی که از «زمان ککوله تاکنون» دیده نشده است.در بحث شیمی آلی، آموختن اعداد یونانی و پیشوندهای اعداد یونانی به عنوان یک پیش نیاز مطرح میگردد. این اعداد در نام گذاری انواع هیدرو کربنها مصرف دارند. بیو شیمی - زیست شیمیاساس شیمیایی بسیاری از واکنشها در جانداران شناخته شده است. کشف ساختمان دو رشتهای دزاکسی ریبونوکلییک اسید (DNA)، جزییات سنتز پروتیین از ژن ها، مشخص شدن ساختمان سه بعدی و مکانیسم فعالیت بسیاری از مولکولهای پروتیینی، روشن شدن چرخههای مرکزی متابولیسم وابسته بهم و مکانیسم های تبدیل انرژی و گسترش فناوری Recombinant DNA (نوترکیبی DNA) از دستاوردهای برجسته زیستشیمی هستند. امروزه مشخص شده که الگو و اساس مولکولی باعث تنوع جانداران شده است.تمامی ارگانیسم ها از باکتری ها مانند اشرشیاکلی تا انسان، از واحدهای ساختمانی یکسانی که به صورت ماکرومولکول ها تجمع مییابند، تشکیل یافتهاند. انتقال اطلاعات ژنتیکی از DNA به ریبونوکلییک اسید (RNA) و پروتیین در تمامی جانداران به صورت یکسان صورت میگیرد. آدنوزین تری فسفات (ATP)، فرم عمومی انرژی در سیستم های زیستی، از راه های مشابهی در تمامی جانداران تولید میشود.تاثیر زیستشیمی در پزشکیمکانیسم های مولکولی بسیاری از بیماریها، از قبیل بیماری کم خونی و اختلالات ارثی متابولیسم، مشخص شده است. اندازه گیری فعالیت آنزیمها در تشخیص کلینیکی ضروری میباشد. برای مثال، سطح بعضی از آنزیمها در سرم نشانگر این است که آیا بیمار اخیرا سکته قلبی کرده است یا نه؟بررسی DNAدر تشخیص ناهنجاریهای ژنتیکی، بیماریهای عفونی و سرطانها نقش مهمی ایفا میکند. سوشهای باکتریایی حاوی DNA نوترکیب که توسط مهندسی ژنتیک ایجاد شده است، امکان تولید پروتیینهایی مانند انسولین و هورمون رشد را فراهم کرده است. به علاوه، زیستشیمی اساس علایم داروهای جدید خواهد بود. در کشاورزی نیز از فناوری DNA نوترکیب برای تغییرات ژنتیکی روی ارگانیسمها استفاده میشود.گسترش سریع علم و تکنولوژی زیستشیمی در سالهای اخیر، پژوهشگران را قادر ساخته که به بسیاری از سوالات و اشکالات اساسی در مورد زیستشناسی و علم پزشکی پاسخ بدهند. چگونه یک تخم حاصل از لقاح گامت های نر و ماده به سلول های ماهیچهای، مغز و کبد تبدیل میشود؟ به چه صورت سلول ها با همدیگر به صورت یک اندام پیچیده درمیآیند؟ چگونه رشد سلولها کنترل میشود؟ علت سرطان چیست؟ سازوکار حافظه کدام است؟ اساس مولکولی روانگسیختگی (شیزوفرنی) چیست؟مدلهای مولکولی ساختمان سه بعدیوقتی ارتباط سه بعدی بیومولکولها و نقش بیولوژیکی آنها را بررسی میکنیم، سه نوع مدل اتمی برای نشان دادن ساختمان سه بعدی مورد استفاده قرار میگیرد.مدل فضاپرکن (Space _ Filling) این نوع مدل، خیلی واقع بینانه و مصطلح است. اندازه و موقعیت یک اتم در مدل فضا پرکن بوسیله خصوصیات باندها و شعاع پیوندهای واندروالسی مشخص میشود. رنگ مدلهای اتم طبق قرارداد مشخص میشود. مدل گوی و میله (ball _ and _ Stick) این مدل به اندازه مدل فضا پرکن، دقیق و منطقی نیست. برای اینکه اتمها به صورت کروی نشان داده شده و شعاع آنها کوچکتر از شعاع واندروالسی است.مدل اسکلتی (Skeletal) سادهترین مدل مورد استفاده است و تنها شبکه مولکولی را نشان میدهد و اتمها به وضوح نشان داده نمیشوند. این مدل، برای نشان دادن ماکرومولکولهای بیولوژیکی از قبیل مولکولهای پروتیینی حاوی چندین هزار اتم مورد استفاده قرار میگیرد. فضا در نشان دادن ساختمان مولکولی، بکار بردن مقیاس اهمیت زیادی دارد. واحد آنگستروم، بطور معمول برای اندازهگیری طول سطح اتمی مورد استفاده قرار میگیرد. برای مثال، طول باند C _ C، مساوی ۱،۵۴ آنگستروم میباشد. بیومولکولهای کوچک، از قبیل کربوهیدراتها و اسیدهای آمینه، بطور تیپیک، طولشان چند آنگستروم است. ماکرومولکولهای بیولوژیکی، از قبیل پروتیینها، ۱۰ برابر بزرگتر هستند. برای مثال، پروتیین حمل کننده اکسیژن در گلبولهای قرمز یا هموگلوبین، دارای قطر ۶۵ آنگستروم است. ماکرومولکولهای چند واحدی ۱۰ برابر بزرگتر میباشند. ماشینهای سنتز کننده پروتیین در سلولها یا ریبوزومها، دارای ۳۰۰ آنگستروم طول هستند. طول اکثر ویروسها در محدوده ۱۰۰ تا ۱۰۰۰ آنگستروم است. سلولها بطور طبیعی ۱۰۰ برابر بزرگتر هستند و در حدود میکرومتر (μm) میباشند. برای مثال قطر گلبولهای قرمز حدود ۷μm است. میکروسکوپ نوری حداقل تا ۲۰۰۰ آنگستروم قابل استفاده است. مثلا میتوکندری را میتوان با این میکروسکوپ مشاهده کرد. اما اطلاعات در مورد ساختمانهای بیولوژیکی از مولکولهای ۱ تا آنگستروم با استفاده از میکروسکوپ الکترونی X-ray بدست آمده است. مولکولهای حیات ثابت میباشند.زمان لازم برای انجام واکنشهای زیستشیمیاییواکنشهای شیمیایی در سامانههای زیستی به وسیله آنزیمها کاتالیز میشوند. آنزیمها سوبستراها را در مدت میلی ثانیه به محصول تبدیل میکنند. سرعت بعضی از آنزیمها حتی سریعتر نیز میباشد، مثلا کوتاهتر از چند میکروثانیه. بسیاری از تغییرات فضایی در ماکرومولکولهای بیولوژیکی به سرعت انجام میگیرد. برای مثال، باز شدن دو رشته هلیکسی DNA از همدیگر که برای همانندسازی و رونویسی ضروری است، یک میکروثانیه طول میکشد. جابجایی یک واحد (Domain) از پروتیین با حفظ واحد دیگر، تنها در چند نانوثانیه اتفاق میافتد. بسیاری از پیوندهای غیر کووالان مابین گروههای مختلف ماکرومولکولی در عرض چند نانوثانیه تشکیل و شکسته میشوند. حتی واکنشهای خیلی سریع و غیر قابل اندازه گیری نیز وجود دارد. مشخص شده است که اولین واکنش در عمل دیدن، تغییر در ساختمان ترکیبات جذب کننده فوتون به نام رودوپسین میباشد که در عرض اتفاق میافتد.انرژی ما بایستی تغییرات انرژی را به حوادث مولکولی ربط دهیم. منبع انرژی برای حیات، خورشید است. برای مثال، انرژی فوتون سبز، حدود ۵۷ کیلوکالری بر مول (Kcal/mol) بوده و ATP، فرمول عمومی انرژی، دارای انرژی قابل استفاده به اندازه ۱۲ کیلوکالری بر مول میباشد. برعکس، انرژی متوسط هر ارتعاش آزاد در یک مولکول، خیلی کم و در حدود ۰،۶ کیلوکالری بر مول در ۲۵ درجه سانتیگراد میباشد. این مقدار انرژی، خیلی کمتر از آن است که برای تجزیه پیوندهای کووالانسی مورد نیاز است، (برای مثال ۸۳Kcal/mol برای پیوند C _ C). بدین خاطر، شبکه کووالانسی بیومولکولها در غیاب آنزیمها و انرژی پایدار میباشد. از طرف دیگر، پیوندهای غیر کووالانسی در سیستمهای بیولوژیکی بطور تیپیک دارای چند کیلوکالری انرژی در هر مول میباشند. بنابراین انرژی حرارتی برای ساختن و شکستن آنها کافی است. یک واحد جایگزین در انرژی، ژول میباشد که برابر ۰،۲۳۹ کالری است.ارتباطات قابل بازگشت بیومولکولهاارتباطات قابل برگشت بیومولکولها از سه نوع پیوند غیر کووالانسی تشکیل شده است. ارتباطات قابل برگشت مولکولی، مرکز تحرک و جنبش موجود زنده است. نیروهای ضعیف و غیر کووالان نقش کلیدی در رونویسی DNA، تشکیل ساختمان سه بعدی پروتیینها، تشخیص اختصاصی سوبستراها بوسیله آنزیمها و کشف مولکولهای سیگنال ایفا میکنند. به علاوه، اکثر مولکولهای زیستی و فرآیندهای درونمولکولی، بستگی به پیوندهای غیر کووالانی همانند پیوندهای کووالانی دارند. سه پیوند اصلی غیر کووالان عبارت است از: پیوندهای الکترواستاتیک، پیوندهای هیدروژنی و پیوندهای واندروالسی آنها از نظر ژیومتری، قدرت و اختصاصی بودن با هم تفاوت دارند. علاوه از آن، این پیوندها به مقدار زیادی از طرق مختلف در محلولها تحت تاثیر قرار میگیرند.شيمي سبز: پيشگيري از آلودگي در سطح مولكولي شيمي نقشي بنيادي در پيشرفت تمدن آدمي داشته و جايگاه آن در اقتصاد، سياست و زندگيروزمره روز به روز پر رنگتر شده است. با اين همه، شيمي طي روند پيشرفت خود، كه همواره با سود رساندن به آدمي همراه بوده، آسيبهاي چشمگيري نيز به سلامت آدمي و محيط زيست وارد كرده است. شيميدانها طي سالها كوشش و پژوهش، مواد خامي را از طبيعت برداشت كردهاند، كه با سلامت آدمي و شرايط محيط زيست سازگاري بسيار دارند، و آنها را به موادي دگرگونه كردهاند كه سلامت آدمي و محيط زيست را به چالش كشيدهاند. همچنين، اين مواد بهسادگي به چرخهي طبيعي مواد باز نميگردند و سالهاي زيادي به صورت زبالههاي بسيار آسيبرسان و هميشگي در طبيعت ميماند. بارها از آسيبهاي مواد شيميايي به بدن آدمي و محيط زيست شنيده و خواندهايم. اما، چارهي كار چيست؟ آيا دوري و پرهيز از بهرهگيري از مواد شيميايي ميتواند به ما كمك كند؟ تا چه اندازهاي ميتوانيم از آنها دوري كنيم؟ كدامها را ميتوانيم به كار نبريم؟ كداميك از فرآوردههاي شيميايي را ميتوان يافت كه با آسيب به سلامت آدمي يا محيط زيست همراه نباشد؟ داروهايي كه سلامتي ما به آنها بستگي زيادي دارد، خود با آسيبهايي به بدن ما همراهاند. آيا ميتوانيم آنها را به كار نبريم؟ آيا ميتوان آب تصفيه شده با مواد شيميايي را ننوشيم؟ پيرامون ما را انبوهي از مواد شيميايي گوناگون فراگرفتهاند كه در زهرآگين بودن و آسيبرسان بودن بيشتر آنها شكي نداريم و از بسياري از آنها نيز نميتوانيم دوري كنيم. بيگمان هر اندازه كه بتوانيم از به كارگيري مواد شيميايي در زندگي خود پرهيز كنيم يا از رها شدن اين گونه مواد در طبيعت جلوگيري كنيم، به سلامت خود و محيط زيست كمك كردهايم. اما به نظر ميرسد در كنار اين راهكارهاي پيشگيرانه، كه تا كنون كارآمدي چشمگيري از خود نشان ندادهاند، بايد به راههاي كارآمدتري نيز بيانديشيم كه دگرگوني در شيوهي ساختن مواد شيمايي در راستاي كاهش آسيبهاي آنها به آدمي و محيط زيست، يكي از اين راههاست. امروزه، از اين رويكرد نوين با عنوان شيمي سبز ياد ميشود كه عبارت است از: طراحي فرآوردهها و فرآيندهاي شيميايي كه بهكارگيري و توليد مواد آسيبرسان به سلامت آدمي و محيط زيست را كاهش ميدهند يا از بين ميبرند. بنيادهاي شيمي سبز شيمي سبز، كه بيشتر به عنوان شيوهاي براي پيشگيري از آلودگي در سطح مولكولي شناخته ميشود، بر دوازده بنياد استوار است كه طراحي يا بازطراحي مولكولها، مواد و دگرگونيهاي شيميايي در راستاي سالمتر كردن آنها براي آدمي و محيط زيست، بر پايهي آنها انجام ميشود. 1. پيشگيري از توليد فراوردههاي بيهوده توانايي شيميدانها براي بازطراحي دگرگونيهاي شيميايي براي كاستن از توليد فراوردههاي بيهوده و آسيبرسان، نخستين گام در پيشگيري از آلودگي است. با پيشگيري از توليد فراوردههاي بيهوده، آسيبهاي مرتبط با انباركردن، جابهجايي و رفتار با آنها را به كمترين اندازهي خود كاهش ميدهيم. 2. اقتصاد اتم، افزايش بهرهوري از اتم اقتصاد اتم به اين مفهوم است كه بازده دگرگونيهاي شيميايي را افزايش دهيم. يعني طراحي دگرگونيهاي شيميايي به شيوهاي باشد كه گنجاندن بيشتر مواد آغازين را در فرآوردههاي نهايي درپي داشته باشد. گزينش اين گونه دگرگونيها، بازده را افزايش و فرآوردههاي بيهوده را كاهش ميدهد. 3. طراحي فرايندهاي شيميايي كمآسيبترشيميدانها در جايي كه امكان دارد بايد شيوهي را طراحي كنند تا موادي را به كار برد يا توليد كند كه زهرآگيني كمتري براي آدمي يا محيط زيست داشته باشند. اغلب براي يك دگرگوني شيميايي واكنشگرهاي گوناگوني وجود دارد كه از ميان آنها ميتوان مناسبترين را برگزيد. 4. طراحي مواد و فراوردههاي شيميايي سالمترفراوردههاي شيميايي بايد به گونهاي طراحي شوند كه با وجود كاهش زهرآگينيشان كار خود را بهخوبي انجام دهند. فراوردههاي جديد را ميتوان به گونهاي طراحي كرد كه سالمتر باشند و در همان حال، كار در نظر گرفته شده براي آنها را بهخوبي انجام دهند. 5. بهرهگيري از حلالها و شرايط واكنشي سالمتربهرهگيري از مواد كمكي(مانند حلالها و عاملهاي جداكننده) تا جايي كه امكان دارد به كمترين اندازه برسد و زماني كه به كار ميروند از گونههاي كمآسيبرسان باشند. دوري كردن از جداسازي در جايي كه امكان دارد و كاهش بهرهگيري از مواد كمكي، در كاهش فراوردههاي بيهوده كمك زيادي ميكند. 6. افزايش بازده انرژي. نياز به انرژي در فرايندهاي شيميايي از نظر اثر آنها بر محيط زيست و اقتصاد بايد در نظر گرفته شود و به كمترين ميزان خود كاهش يابد. اگر امكان دارد، روشهاي ساخت و جداسازي بايد به گونهاي طراحي شود كه هزينههاي انرژي مرتبط با دما و فشار بسيار بالا يا بسيار پايين به كمترين اندازهي خود برسد. 7. بهرهگيري از مواداوليهي نوشدنيدگرگونيهاي شيميايي بايد به گونهاي طراحي شوند تا از مواد اوليهي نوشدني بهره گيرند. فرآوردههاي كشاورزي يا فرآوردههاي بيهودهي فرآيندهاي ديگر، نمونههايي از مواد نوشدني هستند. تا جايي كه امكان دارد، اين گونه مواد را بهجاي مواد اوليهاي كه از معدن يا سوختهاي فسيلي به دست ميآيند، به كار بريم. 8. پرهيز از مشتقهاي شيميايي. مشتقگرفتن(مانند بهرهگيري از گروههاي مسدودكننده يا تغييرهاي شيميايي و فيزيكي گذرا) بايدكاهش يابد، زيرا چنين مرحلههايي به واكنشگرهاي اضافي نياز دارند كه ميتوانند فراوردههاي بيهوده توليد كنند. تواليهاي جايگزين ميتوانند نياز به گروههاي حفاظتكننده يا تغيير گروههاي عاملي را از بين ببرند يا كاهش دهند. 9. بهرهگيري از كاتاليزگرهاكاتاليزگرها گزينشي بودن يك واكنش را افزايش ميدهند؛ دماي مورد نياز را كاهش ميدهند؛ واكنشهاي جانبي را به كمترين اندازه ميرسانند؛ ميزان دگرگونشدن واكنشگرها به فرآوردههاي نهايي را افزايش ميدهند و ميزان فرآوردههاي بيهوده مرتبط با واكنشگرها را كاهش ميدهند. 10. طراحي براي خراب شدنفروآردههاي شيميايي بايد به گونهاي طراحي شوند كه در پايان كاري كه براي آنها در نظر گرفته شده، به فرآوردههاي تجزيهشدني، بشكنند و زياد در محيط زيست نمانند. روش طراحي در سطح مولكول براي توليد فرآوردههايي كه پس از آزاد شدن در محيط به مواد آسيبنرسان تجزيه ميشوند، مورد توجه است. 11. تحليل در زمان واقعي براي پيشگيري از آلودگيبسيار اهميت دارد كه پيشرفت يك واكنش را همواره پيگيري كنيد تا بدانيد چه هنگام واكنش كامل ميشود يا بروز هر فراوردهي جانبي ناخواسته را شناسايي كنيد. هر جا كه امكان داشته باشد، روشهاي آناليز در زمان واقعي به كار گرفته شوند تا به وجود آمدن مواد آسيبرسان پيگيري و پيشگيري شود. 12. كاهش احتمال رويدادهاي ناگواريك راه براي كاهش احتمال رويداهاي شيميايي ناخواسته، بهرهگيري از واكنشگرها و حلالهايي است كه احتمال انفجار، آتشسوزي و رهاشدن ناخواستهي مواد شيميايي را كاهش ميدهند. آسيبهاي مرتبط با اين رويدادها را ميتوان به تغييردادن حالت(جامد، مايع يا گاز) يا تركيب واكنشگرها كاهش داد. كوششها و دستاوردهاي شيمي سبز شيميدانهاي سبز در پي آن هستند كه روندهاي شيميايي سالمتري را جايگزين روندهاي كنوني كنند يا با جايگزين كردن مواد اوليهي سالمتر يا انجام دادن واكنشها در شرايط ايمنتر، فراوردههاي سالمتري را به جامعه هديه دهند. برخي از آن ها ميكوشند شيمي را به زيستشيمي نزديك كند، چرا كه واكنشهاي زيستشيميايي طي ميليونها سال رخ دادهاند و چه براي آدمي و چه براي محيط زيست، چالشها نگران كنندهي به وجود نياوردهاند. بسياري از اين واكنشها در شرايط طبيعي رخ ميدهند و به دما و فشار بالا نياز ندارند. فراوردههاي آنها نيز به آساني به چرخهي مواد بازميگردند و فراوردههاي جانبي آنها براي جانداران سودمند هستند. الگو برداري از اين واكنشها ميتواند چالشهاي بهداشتي و زيستمحيطي كنوني را كاهش دهد. گروه ديگري از شيميدانهاي سبز ميكوشند بهرهوري اتمي را افزايش دهند. طي يك واكنش شيميايي شماري اتم آغازگر واكنش هستند و در پايان بيشتر واكنشها با فراوردههايي رو به رو هستيم كه شمار اتمهاي آنها از شمار همهي اتمهاي آغازين بسيار كمتر است. بيگمان آن اتمها نابود نشدهاند، بلكه در ساختمان فرآوردههاي بيهوده و اغلب آسيبرسان به طبيعت رها ميشوند و سلامت آدمي و ديگر جانداران را به چاش ميكشند. هر چه بتوانيم اتمهاي بيشتري در فرآوردههاي بگنجانيم، هم به سلامت خود و محيط زيست كمك كردهايم و هم از هدر رفتن اتمهايي كه به عنوان مواد اوليه براي آنها پول پرداخت كردهايم، پيشگيري ميكنيم. بازطراحي واكنشهاي شيميايي نيز راهكار سودمند ديگري براي پيشگيري از پيامدهاي ناگوار مواد شيميايي است. در اين بازطراحيها از مواد آغازگر سالمتر بهره ميگيرند يا روندهايي را طراحي ميكنند كه با واكنشهاي مرحلهاي كمتر به فراورده برسند. همچنين، روندهايي را طراحي ميكنند كه به مواد كمكي كمتر، بهويژه حلالهاي شيميايي، نياز دارند. گاهي نيز واكنشهاي زيستشيمي و شيمي را به هم گره ميزنند و روند سالمتري و كارآمدتري را ميآفرينند. بازطراحي روند داروها ميتواند همراه با افزايش كارآمدي آنها به هر چه سالمتر شدن آنها بينجامد و اثرهاي جانبي آنها بر روندهاي زيست شناختي بدن، تا جايي كه امان دارد، كاهش دهد. در ادامه به نمونههايي از كوششها و دستاوردهاي شيميدانهاي سبز اشاره مي شود. 1. سوختهاي جايگزين به كارگيري سوختهاي فسيلي در خودروها با رهاشدن انبوهي از گازهاي گلخانهي به جو همراه شده كه دگرگونيهاي آب و هوايي را در پي داشته است. از سوختن نادرست آنها نيز، مواد زهرآگيني به هوا آزاد شده كه سلامتي آدمي را به چالش كشيده است. حتي اگر بتوانيم بر اين دو چالش بزرگ پيروز شويم، با كاهش روز افزون اندوختههاي فسيلي روبهرو هستيم كه از آن گريزي نيست. اين تنگناها همراه با افزايش روز افزون بهاي اين گونه سوختها، كه به نظر ميرسد همچنان ادامه يابد، پژوهشگران و مهندسان بسياري را به فكر طراحي خودروهايي با سوخت هيدروژن انداخته است. چرا كه خاستگاه اين سوخت، آب است كه فراوانترين ماده در طبيعت است و فرآوردهي سوختن اين سوخت در خودرو نيز خود آب است. با اين همه، سوخت هيدروژن با چالش بزرگي روبهرو است. فراهم آوردن هيدروژن از آب با فرآيند الكتروليز انجام ميشود كه براي پيشبرد آن به الكتريسيته نياز هست و اكنون نيز بيشتر الكتريسيته از سوختن اندوختههاي فسيلي به دست ميآيد. شايد روزي با بهكاربردن برخي كاتاليزگرها بتوانيم از انرژي خورشيدي به جاي سوختهاي فسيلي در پيش بردن روند الكتروليز بهره گيريم، اما هنوز راهكار كارآمدي براي توليد ارزان هيدروژن پيشنهاد نشده است و به نظر نميرسد در آيندهاي نزديك به چنين تواني دست پيدا كنيم. با اين همه، برخي دانشمندان اميدوارند بتوانند خواستگاه زيستي براي هيدروژن به وجود آورند. گروهي از پژوهشگران در سال 2000 ميلادي گزارش كردند كه توانستهاند از جلبكهاي سبز براي آزاد كردن هيدروژن از مولكولهاي آب، به همان اندازه كه از الكتروليز به دست ميآيد، بهره گيرند. اما نور خورشيد براي اين رويكرد گرفتاري درست ميكند، چرا كه جلبك طي فرآيند فتوسنتز اكسيژن نيز توليد ميكند. اين اكسيژن از كار آنزيم توليدكنندهي هيدروژن جلوگيري ميكند و در نتيجه هيدروژن اندكي به دست ميآيد دانشمندان ميكوشند با تغييرهايي كه در اين فرايند طبيعي ميدهند، بازدهي توليد هيدروژن را بالا ببرند. شايد يك روز آبگير كوچكي كه از جلبك پوشيده شده است، خواستگاه هيدروژن خودروهاي ما باشد. در رويكرد ديگر كه مورد توجه است، از روغنهاي گياهي به عنوان خواستگاهي براي تهيهي سوخت جايگزين بهره ميگيرند. براي تهيهي اين نوع سوخت، كه با عنوان بيوديزل شناخته مي شود، پس ماندهي روغن آشپزي را نيز ميتوان به كار گرفت. هر چند از سوختن اين نوع سوخت نيز مانند ديگر سوختهاي فسيلي گاز گلخانهي آزاد ميشود، اما به اندازهاي توليد ميشود كه گياهان طي فرآيند فتوسنتز آن را براي توليد قند به كار ميگيرند. از سوي ديگر، روغنها گياهي نوشدني هستند و از سوختن آنها گوگرد و آلايندههاي آسيبرسان ديگري آزاد نميشود. از سودمنديهاي ديگر اين نوع سوخت اين است كه گليسرين، مادهاي كه در صابون، خميردندان، مواد آرايشي و جاهاي ديگر به كار ميرود، از فرآوردههاي جانبي روند ت�
این صفحه را در گوگل محبوب کنید
[ارسال شده از: راسخون]
[مشاهده در: www.rasekhoon.net]
[تعداد بازديد از اين مطلب: 4067]
صفحات پیشنهادی
شیمی چیست؟
شیمی چیست؟ نويسنده: علیرضا پیشنماز احمدی تاریخچه واژه شیمی خود داستان درازی دارد. ریشه این نام در واژه کیمیاست. خاستگاه واژه کیمیا را برخی از یونانی دانستهاند و ...
شیمی چیست؟ نويسنده: علیرضا پیشنماز احمدی تاریخچه واژه شیمی خود داستان درازی دارد. ریشه این نام در واژه کیمیاست. خاستگاه واژه کیمیا را برخی از یونانی دانستهاند و ...
شیمی چیست؟
شیمی چیست؟ شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط میشود به عناصر شیمیایی و ترکیبات شیمیایی که شامل اتمها، مولکولها، و ...
شیمی چیست؟ شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط میشود به عناصر شیمیایی و ترکیبات شیمیایی که شامل اتمها، مولکولها، و ...
شیمی چیست؟
14 فوريه 2009 – شیمی چیست؟-Yaser!14th February 2009, 03:29 PM. شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط میشود به عناصر ...
14 فوريه 2009 – شیمی چیست؟-Yaser!14th February 2009, 03:29 PM. شیمی مطالعهٔ ساختار، خواص، ترکیبات، و تغییر شکل مواد است. این علم مربوط میشود به عناصر ...
شیمی بین انسانها چیست؟
شیمی بین انسانها چیست؟-شیمی بین انسانها چیست؟ شیمی بین زن و مرد می تواند شیمی خوب باشد یا شیمی بد باشد. اکثر ما انسانها، تجربیات زیادی در مورد اینکه بودن ...
شیمی بین انسانها چیست؟-شیمی بین انسانها چیست؟ شیمی بین زن و مرد می تواند شیمی خوب باشد یا شیمی بد باشد. اکثر ما انسانها، تجربیات زیادی در مورد اینکه بودن ...
شيمي بين انسانها چيست؟
6 ا کتبر 2010 – شيمي بين انسانها چيست؟-*MohseN*6th October 2010, 07:22 PMشيمي بين انسانها چيست؟ رابطه هايي كه شيمي درشان وجود دارد اكثرا با درد، احساس ...
6 ا کتبر 2010 – شيمي بين انسانها چيست؟-*MohseN*6th October 2010, 07:22 PMشيمي بين انسانها چيست؟ رابطه هايي كه شيمي درشان وجود دارد اكثرا با درد، احساس ...
زیست فناوری چیست؟
آیا میدانید زیست فناوری (بیوتكنولوژی) چیست و امروزه مسلح بودن به این دانش ... میكروبیولوژی، بیولوژی مولكولی، بیوشیمی، مهندسی شیمی و اقتصاد را میطلبد.
آیا میدانید زیست فناوری (بیوتكنولوژی) چیست و امروزه مسلح بودن به این دانش ... میكروبیولوژی، بیولوژی مولكولی، بیوشیمی، مهندسی شیمی و اقتصاد را میطلبد.
L S D چیست؟
اكتشافات تصادفی در پزشكیآلرژی، آنافیلاكسی و آنتی هیستامین هاخردل نیتروژن و شیمی درمانی سرطان L S D چیست؟آزمون پاپ چیست ؟نیلس فینسن در سال 1903 .
اكتشافات تصادفی در پزشكیآلرژی، آنافیلاكسی و آنتی هیستامین هاخردل نیتروژن و شیمی درمانی سرطان L S D چیست؟آزمون پاپ چیست ؟نیلس فینسن در سال 1903 .
آزمون پاپ چیست ؟
اكتشافات تصادفی در پزشكیآلرژی، آنافیلاكسی و آنتی هیستامین هاخردل نیتروژن و شیمی درمانی سرطان L S D چیست؟آزمون پاپ چیست ؟نیلس فینسن در سال 1903 .
اكتشافات تصادفی در پزشكیآلرژی، آنافیلاكسی و آنتی هیستامین هاخردل نیتروژن و شیمی درمانی سرطان L S D چیست؟آزمون پاپ چیست ؟نیلس فینسن در سال 1903 .
خردل نیتروژن و شیمی درمانی سرطان
اكتشافات تصادفی در پزشكی آلرژی، آنافیلاكسی و آنتی هیستامین ها خردل نیتروژن و شیمی درمانی سرطان L S D چیست؟آزمون پاپ چیست ؟قرص ضدبارداری شما هم رأی ...
اكتشافات تصادفی در پزشكی آلرژی، آنافیلاكسی و آنتی هیستامین ها خردل نیتروژن و شیمی درمانی سرطان L S D چیست؟آزمون پاپ چیست ؟قرص ضدبارداری شما هم رأی ...
ژئوشيمي چيست؟
22 ا کتبر 2007 – ژئوشيمي چيست؟-RobertDeniro22nd October 2007, 08:10 PMژئوشیمی از دو کلمه Geo به معنی زمین و chemistry به معنی شیمی تشکیل شده است.
22 ا کتبر 2007 – ژئوشيمي چيست؟-RobertDeniro22nd October 2007, 08:10 PMژئوشیمی از دو کلمه Geo به معنی زمین و chemistry به معنی شیمی تشکیل شده است.
-
گوناگون
پربازدیدترینها