محبوبترینها
نمایش جنگ دینامیت شو در تهران [از بیوگرافی میلاد صالح پور تا خرید بلیط]
9 روش جرم گیری ماشین لباسشویی سامسونگ برای از بین بردن بوی بد
ساندویچ پانل: بهترین گزینه برای ساخت و ساز سریع
خرید بیمه، استعلام و مقایسه انواع بیمه درمان ✅?
پروازهای مشهد به دبی چه زمانی ارزان میشوند؟
تجربه غذاهای فرانسوی در قلب پاریس بهترین رستورانها و کافهها
دلایل زنگ زدن فلزات و روش های جلوگیری از آن
خرید بلیط چارتر هواپیمایی ماهان _ ماهان گشت
سیگنال در ترید چیست؟ بررسی انواع سیگنال در ترید
بهترین هدیه تولد برای متولدین زمستان: هدیههای کاربردی برای روزهای سرد
در خرید پارچه برزنتی به چه نکاتی باید توجه کنیم؟
صفحه اول
آرشیو مطالب
ورود/عضویت
هواشناسی
قیمت طلا سکه و ارز
قیمت خودرو
مطالب در سایت شما
تبادل لینک
ارتباط با ما
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
آمار وبسایت
تعداد کل بازدیدها :
1827741252
نیروگاه
واضح آرشیو وب فارسی:پی سی سیتی: نیروگاه
نیروگاهها کارخانههای تولید برق (http://fa.wikipedia.org/wiki/%D8%A8%D8%B1%D9%82) هستند.
در دنیا ۵ منبع انرژی، که تقریباً تمام برق دنیا را مهیا میکنند، وجود دارد. این منابع ذغال سنگ، نفت خام، گاز طبیعی، نیروی آب و انرژی هستهای هستند. تجهیزات هستهای، ذغالی و نفتی از چرخه بخار برای برگرداندن گرما (http://fa.wikipedia.org/wiki/%DA%AF%D8%B1%D9%85%D8%A7) به انرژی الکتریکی استفاده میکنند.
نیروگاه بخاری از آب بسیار خالص در یک چرخه (http://fa.wikipedia.org/w/index.php?title=%DA%86%D8%B1%D8%AE%D9%87&action=edit) بسته استفاده میکند. ابتدا آب در بویلرها (http://fa.wikipedia.org/wiki/%D8%A8%D9%88%DB%8C%D9%84%D8%B1) برای تولید بخار در فشار و دمای بالا گرما داده میشود که عموماً دماو فشارآن در یک نیروگاه مدرن به 150 اتمسفر (http://fa.wikipedia.org/w/index.php?title=%D8%A7%D8%AA%D9%85%D8%B3%D9%81%D8%B1&action=edit) و550 درجه سانتیگراد میرسد. این بخار تحت فشار زیاد توربینها را (که آنها هم ژنراتورهای الکترینیققا میگردانند , و این ژنراتورها با توربینها بطور مستقیم کوپل (http://fa.wikipedia.org/w/index.php?title=%DA%A9%D9%88%D9%BE%D9%84&action=edit) هستند) میگردانند یا اصطلاحا درایو میکنند. بیشینه انرژی از طریق بخار به توربینها داده خواهد شد فقط اگر بعداً همان بخار اجازه یابد در یک فشار کم (بطور ایده آل فشار خلاء) از توربینها خارج شود. این مطلب میتواند توسط میعان بخار خروجی به آب بدست آید.
سپس آب دوباره بداخل بویلرها (http://fa.wikipedia.org/wiki/%D8%A8%D9%88%DB%8C%D9%84%D8%B1) پمپ میشود و چرخه دوباره شروع میگردد. در مرحله تقطیر مقدرا زیادی از گرما مجبور است از سیستم استخراج شود. این گرما در چگالگر (http://fa.wikipedia.org/w/index.php?title=%DA%86%DA%AF%D8%A7%D9%84%DA%AF%D8%B1&action=edit) که یک شکل از تبادل کننده گرمایی است , برداشته میشود. مقدار بیشتری از گرمای آب ناخالص وارد یک طرف چگالگر میشود و آن را از طرف دیگر ترک میکند بصورت آب گرم , داشتن گرمای به اندازه کافی استخراج شده از بخار داغ برای تقطیر آن به آب. در هیچ نقطهای نباید دو سیستم آبی مخلوط شوند. در یک سایت (http://fa.wikipedia.org/w/index.php?title=%D8%B3%D8%A7%DB%8C%D8%AA&action=edit) ساحلی آب ناخالص داغ شده به سادگی به دریا برگشت داده میشود در یک نقطه با فاصله کوتاه. یک نیروگاه 2 GW به حدود 60 تن آب دریا در هر ثانیه احتیاج دارد. این برای دریا مشکل نیست , اما در زمین تعداد کمی از سایتها میتوانند اینقدر آب را در یک سال ذخیره کنند. چاره دیگر بازیافت آب است. برجهای خنک کن برای خنک کردن آب ناخالص استفاده میشوند بطوریکه آن میتواند به چگالگرها برگردانده بشود , بنابراین همان آب بطور متناوب بچرخش در میآید. یک برج خنک کن از روی ساحختار سیمانی اش که مانند یک دودکش (http://fa.wikipedia.org/w/index.php?title=%D8%AF%D9%88%D8%AF%DA%A9%D8%B4&action=edit) خیلی پهن است شناخته شده است و بصورت مشابه نیز عمل میکند. حجم زیادی از هوا داخل اطراف پایه (در پایین و داخل و مرکز لوله برج) آن کشیده میشود و ازمیانه بالایی سرباز آن خارج میشود. آب گرم و ناخالص به داخل مرکز داخلی برج از تعدای آب پاش نرم (آب پاش با سوراخهای ریز) پاشیده میشود و هنگامیکه آن فرو میریزد با بالارفتن هوا(توسط هوای بالا رونده) خنک میشود. سرانجام آب پس از خنک شدن در یک حوضچه در زیر برج جمع میشود. برج خنک کن وافعا یک تبدل دهنده گرمایی دوم , که گرمای (http://fa.wikipedia.org/wiki/%DA%AF%D8%B1%D9%85%D8%A7) آب ناخالص را به هوای اتمسفر میفرستد , است, اما نه مانند تبادل دهنده گرمایی اول , در اینجا دو سیال اجازه مییابند با هم تماس داشته باشند و در نتیجه مقداری ار آب توسط تبخیر کم میشود.
برجهای خنک کن هرگز قادر به کاهش دمای آب ناخالص تا پایینتر از دمای حدی هوا نیستند بطوریکه کارآیی کندانسور و ازآنجا کارآیی تمام نیروگاه در مقایسه با یک سایت ساحلی کاهش مییابد. همچنین ساختمان برجهای خنک کن قیمت کلی ساختمان و بنای نیروگاه را افزایش میدهد.
احتیاج برای خنک کردن آب یک عامل مهم در انتخاب محل نیروگاه زغالی , نفتی و هستهای است. یک سایت که مناسب است برای یک نیروگاه که از یک نوع سوخت استفاده میکند بناچار مناسب نیست برای یک نیروگاه که ار نوع دیگری سوخت استفاده میکند.
//نیروگاههای ذغال-سوختی
(Coal-Fired Power Stations) پیش از این نیروگاههای سوخت ذغال سنگ نزدیک باری که آنها نامین میکردند ساخته میشدند. یک نیروگاه با خروجی 2GW , درحدود 5 میلیون تن ذغال در سال مصرف میکند. در بریتانیا: که بیشتر ذغال نیروگاه توسط ریل (http://fa.wikipedia.org/wiki/%D8%B1%DB%8C%D9%84) حمل میشود: , این نشان میدهد , یک مقدار متوسط در حدود 13 قطار در روز را که هرکدام 1000تن را حمل میکنند. این یعنی اینکه نیروگاههای ذغال- سوختی به یک ریل متصل نیاز دارند مگر اینکه نیروگاه درست در دهانه معدن (بسیار نزدیک به معدن) ساخته شود.
نیروگاههای نفت-سوختی
(Oil-Fired Power Stations) سوخت نفتی نیروگاه میتواند مشتق بشود به نفت خام که نفتی است هنگامیکه از چاه بیرون میآید, و نفت باقیمانده که باقی میماند هنگامیکه بخشهای قابل دسترس استخراج بشوند در تصفیه نفت. قیمت انتقال نفت توسط خطوط لوله کمتر از انتقال ذغال سنگ با ریل (http://fa.wikipedia.org/wiki/%D8%B1%DB%8C%D9%84) است, اما حتی همان نیروگاههای سوخت نفت خام هم اغلب در نزدیکی اسکلهها (http://fa.wikipedia.org/w/index.php?title=%D8%A7%D8%B3%DA%A9%D9%84%D9%87&action=edit) و لنگرگاههای (http://fa.wikipedia.org/wiki/%D9%84%D9%86%DA%AF%D8%B1%DA%AF%D8%A7%D9%87) با آب عمیق که برای تانکرهای (http://fa.wikipedia.org/w/index.php?title=%D8%AA%D8%A7%D9%86%DA%A9%D8%B1&action=edit) اندازه متوسط (تانکرهای حمل و نقل سوخت) مناسب است , واقع میشوند. نفت باقیمانده نیروگاههای سوختی احتیاج دارد در نزدیکی تصفیه خانه که آنها را تأمین میکند واقه شوند. این بدلیل است که نفت باقیمانده بسیار چسبناک است و میتواند فقط منتقل بشود در میان خطوط لوله بطور اقتصادی اگر آن گرم نگه داشته بشود.
[ویرایش (http://fa.wikipedia.org/w/index.php?title=%D9%86%DB%8C%D8%B1%D9%88%DA%AF%D8%A7%D9%87&action=edit§ion=3)] نیروگاههای هسته ای
در مقابله با ذغال سنگ و نفت (http://fa.wikipedia.org/wiki/%D9%86%D9%81%D8%AA) , ارزش انتقال سوخت هستهای ناچیزاست بدلیل مقداراستعمال خیلی کم. یک نیروگاه 1GW درحدود 41/2 تن اورانیوم در هرهفته نیاز دارد. این مقایسه میشود بطور بسیار مطلوب با 50000تن سوخت که در یک هفته در نیروگاه ذغال- سوختی سوزانده میشد. نیروگاههای هستهای در حال حاضر تقریباً آب خنک بیشتری درمقایسه با نیروگاههای ذغال- سوختی و نفت- سوختی استفاده میکنند , بعلت کارایی و بازده (http://fa.wikipedia.org/wiki/%D8%A8%D8%A7%D8%B2%D8%AF%D9%87) پایین آنها. همه نیروگاههای هستهای در بریتانیا , با یک چشم داشت, در ساحل واقع میشوند و از آب خنک دریا استفاده میکنند. نیروگاههای هسته ای ذوالفقار دانشی
نیروگاههای هستهای حدود 17 درصد برق را تأمین میکنند برخی کشورها برای تولید نیروی الکتریکی خود، وابستگی بیشتری به انرژی هستهای دارند. براساس آمار آژانس انرژی اتمی، 75 درصد برق کشور فرانسه در نیروگاههای هستهای تولید میشود و در ایالات متحده، نیروگاههای هستهای 15 درصد برق را تأمین میکنند. بیش از چهارصد نیروگاه هستهای در سراسر دنیا وجود دارد که بیش از یکصد عدد آنها در ایالات متحده واقع شده است. یک نیروگاه هستهای بسیار شبیه به یک نیروگاه سوخت فسیلی تولید کننده انرژی الکتریکی است و تنها تفاوتی که دارد، منبع گرمایی تولید بخار است. این وظیفه در نیروگاه هستهای برعهده رآکتور هستهای است.
رآکتور هسته ای همه رآکتورهای هستهای تجاری از طریق شکافت هستهای گرما تولید میکنند. همانطور که میدانید، شکافت اورانیوم نوترونهای زیادی آزاد میکند، بیشتر از آنکه لازم باشد. اگر شرایط واکنش مساعد باشد فرآیند به طور خود به خودی انجام میشود و یک زنجیره از شکافتهای هستهای به وجود میآید. نوترونهایی که از فرآیند شکافت آزاد میشوند، بسیار سریعند و هستههای دیگر نمیتوانند آنها را به راحتی جذب کنند. از این رو در اکثر رآکتورها قسمتی به نام کند کننده نوترون وجود دراد که در آن از سرعت نوترونها کاسته میشود و در نتیجه نوترونها به راحتی جذب میشوند. چنین نوترونهایی آن قدر کند میشوند تا با هسته راکتور به تعادل گرمایی برسند. نام گذاری این نوترونها به نوترونهای گرمایی یا نوترونهای کند هم از همین رو است. مقدار انرژی گرمایی که در یک رآکتور پارامتر بحرانی است و با کنترل آن میتوان رآکتور را در حالت عادی نگاه داشت. این کار با تنظیم تعداد میلههای کنترل درون رآکتور صورت میگیرد. میله کنترل از مواد جذب کننده نوترون ساخته شده است و با افزایش یا کاهش جذب نوترون، میتوان گسترش واکنش زنجیرهای را کاهش یا افزایش داد. البته با استفاده از کند کنندههای نوترون یا تغییر دادن نحوه قرار گیری میلههای سوخت هم میتوان انرژی خروجی رآکتور را کنترل کرد.
طراحی یک رآکتور رآکتورهای هستهای برای انجام واکنشهای هستهای در مقیاس وسیع طراحی میشوند. گرما، اتمهای جدید و تابش بسیار شدید نوترون، محصولات واکنش انجام شده در رآکتور هستند و بسته به استفادهای که از رآکتور میشود، از یکی از محصولات استفاده میشود. در یک نیروگاه هستهای تولید برق از انرژی گرمایی تولید شده برای چرخاندن توربین و درنهایت تولید انرژی الکتریکی استفاده میشود. در برخی رآکتورهای نظامی و آزمایشی بیشتر از باریکه نوترون پر انرژی استفاده میشود تا مواد ساده را به عناصر کم یاب و جدیدی تبدیل کنند. هدف از رآکتور هر چه باشد، برای به دست آوردن این محصولات لازم است یک واکنش هستهای زنجیرهای به طور پیوسته ادامه یابد. برای ادامه یک واکنش زنجیرهای هم رآکتور باید در حالت بحرانی یا فوق بحرانی قرار داشته باشد. کند کننده و وسیله کنترل در فراهم آوردن چنین شرایطی نقش بسیار مهمی برعهده دارند. رآکتوری که از کند کننده استفاده میکند، رآکتور گرمایی یا رآکتور کند نامیده میشود. این رآکتورها با توجه به نوع کند کنندهای که مورد استفاده قرار میگیرد طبقه بندی میشوند. آب معمولی (آب سبک)، آب سنگین و گرافیت، مواد رایج کند کننده هستند. البته گرافیت مشکلات فراوانی را به وجود میآورد و بسیار خطرآفرین است، مانند حادثه انفجار چرنوبیل یا آتش سوزی وانیدسکیل. رآکتورهایی که از کند کنندهها استفاده نمیکنند، رآکتورهای سریع خوانده میشوند. در این نوع رآکتورها فشار ذرات نوترون بسیار بالا است و از این رو میتوان برخی واکنشهای هستهای را در آنها انجام داد که ترتیب دادن آنها در رآکتور کند بسیار مشکل است. شرایط خاصی که در رآکتورهای سریع وجود دارد، سبب میشود بتوان هسته اتم توریوم و برخی ایزوتوپهای دیگر را به سوخت هستهای قابل استفاد تبدیل کرد. چنین رآکتوری میتواند سوختی بیش از حد نیاز خود را تولید کند و به همین دلیل به آن رآکتور سوخت ساز هم گفته میشود.
در همه رآکتورها، قلب رآکتور که دمای بسیار زیادی دارد باید خنک شود. در یک نیروگاه هسته ای، سیستم خنک ساز به نوعی طراحی میشود که از گرمای آزاد شده به بهترین شکل ممکن استفاده شود. در اغلب این سیستمها از آب استفاده میشود. اما آب نوعی کند کننده هم محسوب میشود و از این رو نمیتواند در رآکتورهای سریع مورد استفاده قرار گیرد. در رآکتورهای سریع از سدیم مذاب یا نمکهای سدیم استفاده میشود و دمای عملیاتی خنک ساز بالاتر است. در رآکتورهایی که برای تبدیل مورد طراحی شده اند، به راحتی گرمای آزاد شده را در محیط آزاد میکنند. در یک نیروگاه هسته ای، رآکتور کند منبع آب را گرم میکند و آن را به بخار تبدیل میکند. بخار آب توربین بخار را به حرکت در میآورد، توربین نیز ژنراتور را میچرخاند و به این ترتیب انرژی تولید میشود. این آب و بخار آن در تماس مستقیم با راکتور هستهای است و از این رو در معرض تابشهای شدید رادیواکتیو قرار میگیرند. برای پیشگیری از هر گونه خطر مرتبط با این آب رادیواکتیو، در برخی رآکتورها بخار تولید شده را به یک مبدل حرارتی ثانویه وارد میکنند و از آن به عنوان یک منبع گرمایی در چرخه دومی از آب و بخار استفاده میکنند. بدین ترتیب آب و بخار رادیواکتیو هیچ تماسی با توربین نخواهند داشت.
انواع رآکتورهای گرمایی در در رآکتورهای گرمایی علاوه برکند کننده، سوخت هستهای (ایزوتوپ قابل شکافت القایی)، مخزن بخار و لولههای منتقل کننده آن، دیوارههای حفاظتی و تجهیزات کنترل و مشاهده سیستم رآکتور نیز وجود دارند. البته بسته به این که این رآکتورها از کانالهای سوخت فشرده شده، مخزن بزرگ بخار یا خنک کننده گازی استفاده کنند، میتوان آنها را به سردسته تقسیم کرد. الف – کانالهای تحت فشار در رآکتورهای RBMK و CANDU استفاده میشوند و میتوان آنها را در حال کارکردن رآکتور، سوخت رسانی کرد. ب – مخزن بخار پرفشار داغ، رایجترین نوع رآکتور است و در اغلب نیروگاههای هستهای و رآکتورهای دریایی (کشتی، ناوهواپیمابر یا زیردریایی) از آن استفاده میشود. این مخزن میتواند به عنوان لایه حفاظتی نیز عمل کند. ج – خنک سازی گازی: در این رآکتورها به جای آب، از یک سیال گازی شکل برای خنک کردن رآکتور استفاده میشود. این گاز در یک چرخه گرمایی با منبع حرارتی راکتور قرار میگیرد و معمولاً از هلیوم برای آن استفاده میشود، هر چند که نیتروژن و دی اکسید کربن نیز کاربرد دارند. در برخی رآکتورهای جدید، رآکتور به قدری گرما تولید میکند که گاز خنک کن میتواند مستقیما یک توربین گازی را بچرخاند، در حالی که در طراحیهای قدیمی تر گاز خنک کن را به یک مبدل حرارتی میفرستادند تا در یک چرخه دیگر، آب را به بخار تبدیل کند و بخار داغ، یک توربین بخار را بگرداند.
بقیه اجزای نیروگاه هسته ای غیر از رآکتور که منبع گرمایی است، تفاوت اندکی بین نیروگاه هستهای و یک نیروگاه حرارتی تولید برق با سوخت فسیلی وجود دارد. مخزن بخار تحت فشار معمولاً درون یک ساختمان بتونی تعبیه میشود که این ساختمان به عنوان یک سد حفاظتی در برابر تابش رادیواکتیو عمل میکند. این ساختمان هم درون یک مخزن بزرگتر فولادی قرار میگیرد. هسته رآکتور و تجهیزات مرتبط با آن درون این مخزن فولادی قرار گرفتهاند و کارکنان میتوانند راکتور را تخلیه یا سوخت رسانی کنند. وظیفه این مخزن فولادی، جلوگیری از نشت هر گونه گاز یا مایع رادیواکتیو از درون سیال است. در نهایت این مخزن فولادی هم به وسیله یک ساختمان بتونی خارجی محافظت میشود. این ساختمان به قدری محکم است که در برابر اصابت یک هواپیمای جت مسافربری (مشابه حادثه یازده سپتامبر) هم تخریب نمیشود. وجود این ساختمان حفاظتی دوم برای جلوگیری از انتشار مواد رادیواکتیو در اثر هرگونه نشت از حفاظ اول ضروری است. در حادثه انفجار چرنوبیل، فقط یک ساختمان حفاظتی وجود داشت و همان موجب شد موادراکتیو در سطح اروپا پخش شود.
رآکتورهای هستهای طبیعی در طبیعت هم میتوان نشانههایی از رآکتور هستهای پیدا کرد، البته به شرطی که تمام عوامل مورد نیاز به طور طبیعی در کنار هم قرار گرفته باشند. تنها نمونه شناخته شده یک رآکتور هستهای طبيعی دو میلیارد سال پیش در منطقه اوکلو در کشور گابون (قاره افریقا) فعالیتش را آغاز کرده است. البته دیگر چنین رآکتورهایی روی زمین شکل نمیگیرند، زیرا واپاشی رادیواکتیو این مواد (به خصوص U-235) در این زمان طولانی 5/4 میلیارد ساله (سن زمین)، فراوانی U-235 را در منابع طبیعی این رآکتورها بسیار کاهش داده است، به طوری که مقدار آن به پایین تر از حد مورد نیاز آغاز یک واکنش زنجیرهای رسیده است. این رآکتورهای طبیعی زمانی شکل گرفتند که معادن غنی از اورانیوم به تدریج از آب زیرزمینی یا سطحی پر شدند. این آب به صورت کند کننده عمل کرد و واکنشهای زنجیرهای شدیدی به وقوع پیوست. با افزایش دما، آب کند کننده بخار میشد و رآکتور خاموش شد. پس از مدتی، این بخارها به مایع تبدیل میشدند و دوباره رآکتور به راه میافتاد. این سیستم خودکار و بسته، یک رآکتور را کنترل میکرد و برای صدها هزار سال، این رآکتور را فعال نگاه میداشت. مطالعه و بررسی این رآکتورهای هستهای طبیعی بسیار ارزشمند است، زیرا میتواند به تحلیل چگونگی حرکت مواد رادیواکتیو در پوسته زمین کمک کند. اگر زمین شناسان بتوانند را از این حرکتها را شناسایی کنند، میتوانند راه حلهای جدیدی برای دفن زبالههای هستهای پیدا کنند تا روزی خدای ناکرده، این ضایعات خطرناک به منابع آب سطح زمین نشت نکنند و فاجعهای بشری به بار نیاورند.
انواع رآکتورهای گرمایی الف – کند سازی با آب سبک: a- رآکتور آب تحت فشار Pressurized Water Reactor(PWR) b- رآکتور آب جوشان Boiling Water Reactor(BWR) c- رآکتور D2G
ب- کند سازی با گرافیت: a- ماگنوس Magnox b- رآکتور پیشرفته با خنک کنندی گازی Advanced Gas-Coaled Reactor (AGR) c- RBMK d- PBMR
ج – کند کنندگی با آب سنگین: a – SGHWR b – CANDU
رآکتور آب تحت فشار، PWR رآکتور PWR یکی از رایجترین راکتورهای هستهای است که از آب معمولی هم به عنوان کند ساز نوترونها و هم به عنوان خنک ساز استفاده میکند. در یک PWR، مدار خنک اولیه از آب تحت فشار استفاده میکند. آب تحت فشار، در دمایی بالاتر از آب معمولی به جوش میآید، از این دوچرخه خنک ساز اولیه را به گونهای طراحی میکنند که آب با وجود آنکه دمایی بسیار بالا دارد، جوش نیاید و به بخار تبدیل نشود. این آب داغ و تحت فشار در یک مبدل حرارتی، گرما را به چرخه دوم منتقل میکند که یک نوع چرخه بخار است و از آب معمولی استفاده میکند. دراین چرخه آب جوش میآید و بخار داغ تشکیل میشود، بخار داغ یک توربین بخار را میچرخاند، توربین هم یک ژنراتور و در نهایت ژنراتور، انرژی الکتریکی تولید میکند. PWR به دلیل دارابودن چرخه ثانویه با BWR تفاوت دارد. از گرمای تولیدی در PWR به عنوان سیستم گرم کننده درنواحی قطبی نیز استفاده شده است. این نوع رآکتور، رایجترین نوع رآکتورهای هستهای است و در حال حاضر، بیش از 230 عدد از آنها در نیروگاههای هستهای تولید برق و صدها رآکتور دیگر برای تأمین انرژی تجهیزات دریایی مورد استفاده قرار میگیرند.
خنک کننده همان طور که میدانید، برخورد نوترونها با سوخت هستهای درون میلههای سوخت، موجب شکافت هسته اتمها میشود و این فرآیند هم به نوبه خود، گرما و نوترونهای بیشتری آزاد میکند. اگر این حرارت آزاد شده منتقل نشود، ممکن است میلههای سوخت ذوب شوند و ساختار کنترلی رآکتور از بین برود (و البته خطرهای مرگ آوری که به دنبال آن روی میدهند.) در PWR، میلههای سوخت به صورت یک دسته در ساختاری، ترسیمی قرار گرفتهاند و آب از کف رآکتور به بالا جریان پیدا میکند. آب از میان این میلههای سوخت عبور میکند و به شدت گرم میشود، به طوری که به دمای 325 درجه سانتی گراد میرسد. درمبدل حرارتی، این آب داغ موجب داغ شدن آب در چرخه دوم میشود و بخاری با دمای 270 درجه سانتی گراد تولید میکند تا توربین را بچرخاند.
کند کننده نوترونهای حاصل از یک شکافت هستهای بیش از آن حدی گرمند که بتوانند یک واکنش شکافت هستهای را آغاز کنند. انرژی آنها را باید کاهش داد تا با محیط اطراف خود به تعادل گرمایی برسند. محیط اطراف نوترونها (قلب رآکتور) دمایی در حدود 450 درجه سانتی گراد دارد. در یک PWR، نوترونها در پی برخورد با مولکولهای آب خنک ساز، انرژی جنبشی خود را از دست میدهند؛ به طوری که پس از 8 تا 10 برخورد (البته به طور متوسط) با محیط هم دما میشوند. در این حالت، احتمال جذب نوترونها از سوی هسته U-235 بسیار زیاد است ودر صورت جذب، بالافاصله هسته U-236 جدید دچار شکافت میشود. مکانیسم حساسی که هر رآکتور هستهای را کنترل میکند، سرعت آزاد سازی نوترونها در طول یک فرآیند شکافت است به طور متوسط از هر شکافت، دونوترون و مقدار زیادی انرژی آزاد میشود. نوترونهای آزاد شده اگر با هسته U-235 دیگری برخورد کنند، شکافت دیگری را سبب میشوند و در نهایت یک واکنش زنجیرهای روی میدهد. اگر تمام این نوترونها در یک لحظه آزاد شوند، تعدادشان به قدری زیاد میشود که باعث ذوب شدن راکتور خواهد شد. (تعداد ذرات پر انرژی، دمای یک سیستم را تعیین میکند. معادله بوتنرمن، این ارتباط را توصیف میکند.) خوشبختانه برخی از این نوترونها پس از یک بازه زمانی نه چندان کوتاه (حدود یک دقیقه) تولید میشوند و سبب میشوند دیگر عوامل کنترل کننده از این تاخیر زمانی استفاده کرده، اثر خود را داشته باشند. یکی از مزیتهای استفاه از آب در PWR، این است که اثر کند سازی آب با افزایش دما کاهش مییابد. در حالت عادی، آب در فشار 150 برابر فشار یک اتمسفر قرار دارد (حدود 15 مگا پاسکال) و در قلب رآکتور به دمای 325 درجه سانتی گراد میرسد. درست است که آب با فشار پانزده مگا پاکسال در این دما جوش نمیآید، ولی به شدت از خاصیت کند کنندگی اش کاسته میشود، بنابراین آهنگ واکنش شکافت هستهای کاهش مییابد، حرارت کمتری تولید میشود و دما پایین میآید. دما که کاهش یابد، توان رآکتور افزایش مییابد و دما که افزایش یابد توان راکتور کاهش مییابد؛ پس خود سیستم PWR دارای یک سیستم خود تعادلی در رآکتور است و تضمین میکند توان رآکتور در کمترین میزان مورد نیاز برای تأمین گرمای سیستم بخار ثانویه است. در اغلب رآکتورهای PWR، توان رآکتور را در دوره فعالیت معمولی با تغییرات غلظت بورون (در شکل اسید بوریک) در چرخه خنک کننده اولیه کنترل اولیه کنترل میکنند سرعت جریان خنک کننده اول در رآکتورهای PWR معمولی ثابت است. بورون یک جذب کننده قوی نوترون است و با افزایش یا کاهش غلظت آن، میتوان شدت فعالیت راکتور را کاهش یا افزایش داد. برای این کار، یک سیستم کنترلی پیچیده شامل پمپهای فشار بالا که آب را در فشار 15 مگا پاسکال از چرخه خارج میکند، تجهیزات تغییر غلظت اسید بوریک و تزریق مجدد آب به چرخه خنک ساز مورد نیاز است. یکی از اشکالات راکتورهای شکافت، این است که حتی پس از توقف واکنش شکافت، هنوز هم واپاشیهای رادیواکتیوی انجام میشود و حرارت زیادی آزاد میشود که میتواند راکتور را ذوب کند. البته سیستمهای حفاظتی و پشتیبانی متعددی برای جلوگیری از این واقعه وجود دارند، با این حال ممکن است در اثر پیچیدگیهای این سیستم، برهمکنشهای پیش بینی نشده یا خطاهای عملیاتی مرگ آفرینی در شرایط اضطراری روی دهند. در نهایت، هر رآکتور با یک حفاظ ساختمانی بتونی احاطه شده است که آخرین سد در برابر تشعشعات رادیواکتیو است.
این صفحه را در گوگل محبوب کنید
[ارسال شده از: پی سی سیتی]
[مشاهده در: www.p30city.net]
[تعداد بازديد از اين مطلب: 814]
-
گوناگون
پربازدیدترینها