محبوبترینها
نمایش جنگ دینامیت شو در تهران [از بیوگرافی میلاد صالح پور تا خرید بلیط]
9 روش جرم گیری ماشین لباسشویی سامسونگ برای از بین بردن بوی بد
ساندویچ پانل: بهترین گزینه برای ساخت و ساز سریع
خرید بیمه، استعلام و مقایسه انواع بیمه درمان ✅?
پروازهای مشهد به دبی چه زمانی ارزان میشوند؟
تجربه غذاهای فرانسوی در قلب پاریس بهترین رستورانها و کافهها
دلایل زنگ زدن فلزات و روش های جلوگیری از آن
خرید بلیط چارتر هواپیمایی ماهان _ ماهان گشت
سیگنال در ترید چیست؟ بررسی انواع سیگنال در ترید
بهترین هدیه تولد برای متولدین زمستان: هدیههای کاربردی برای روزهای سرد
در خرید پارچه برزنتی به چه نکاتی باید توجه کنیم؟
صفحه اول
آرشیو مطالب
ورود/عضویت
هواشناسی
قیمت طلا سکه و ارز
قیمت خودرو
مطالب در سایت شما
تبادل لینک
ارتباط با ما
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
آمار وبسایت
تعداد کل بازدیدها :
1829165650
آغاز زندگي ستاره ها
واضح آرشیو وب فارسی:راسخون:
آغاز زندگي ستاره ها نويسنده: محسن شاد مهري زماني نه چندان دور تصور اين که نقطه اي نوراني در آسمان شب، وراي آرامش ظاهري شان، سيري تحولي را پشت سر گذاشته اند تا چشمان کنجکاو بشر نظاره گرشان باشد بسيار بعيد ودور از ذهن بود. گرچه دنياي اختر فيزيک تحولات شگرفي را تجربه کرده است - به ويژه طي دهه ي اخير - زندگي امروزي به بسياري از افراد امکان نمي دهد که به آسمان بالاي سرشان نگاهي بياندازند. اگر هم در شرايطي خاص چنين کنند، اين نقطه هاي نوراني چيزي فراتر از چند نقطه اي درخشان به نظرشان نمي رسند که شايد بتوان باخطوط فرضي آن ها را به هم متصل ومستطيل يا مثلثي را مجسم کرد. ولي آيا به راستي اين نقطه هاي نوراني - يا همان ستاره ها - هميشه وجود داشته اند؟ اگرچنين نيست، چگونه به وجود آمده اند؟ دراين ميان خورشيد، که خود ستاره اي است، چگونه شکل گرفته است؟ خورشيد، تنها يکي از بي شمار ستاره هاي موجود در عالم هستي است. ستاره اي با دماي سطحي حدود 6000 کلوين ودماي مرکزي حدود 15 ميليون کلوين وبا شعاعي برابر با 700 هزار کيلومتر، درفاصله ي تقريبي 8 دقيقه ي نوري از زمين، که حيات بر روي اين کره ي خاکي را ميسر کرده است. نه تنها درکهکشان ما بلکه در کهکشان هاي ديگر، ستاره هايي بسيار بزرگ تر يا کوچک تر از خورشيد وجود دارند. هر يک از اين ستاره ها، درمرحله اي از سير تحولي خود هستند. اما نکته ي جالب توجه اين است که چگونه اين سير تحولي را آغاز مي کنند؟ ستاره ها چگونه از محيط رقيق ميان ستاره اي پديد مي آيند؟ برخلاف تصور بيشتر مردم، فضاي ميان ستاره هاي کهکشان ما خالي نيست. البته درمقياس زميني شايد چنين به نظر آيد ولي درمقياس کيهاني، اين فضا نه تنها تهي از عناصر نيست بلکه تاکنون حدود 60 نوع مولکول درفضاي «ميان ستاره اي» شناسايي شده اند که البته هيدروژن فراوان ترين آن هاست. هر سانتي متر مکعب هوا درسطح دريا شامل حدود 10به توان 19 مولکول است. اما درفضاي ميان ستاره اي، چگالي عددي عناصر يا مولکول هاي موجود بين 1(حتي کمتر!) تا 10 هزار ذره برسانتي متر مکعب است. بنابراين، فضاي ميان ستاره اي درمقاسه با هوايي که تنفس مي کنيم تقريباً تهي محسوب مي شود. اما همين محيط، که چگالي بسيار کمي دارد، به سبب ابعاد عظيمش ممکن است جرمي بيش از ده ها يا حتي صدها هزار برابرجرم خورشيد داشته باشد. گاهي ابعاد محيط ميان ستاره اي به چند ده سال نوري مي رسد. ستاره ها، درحقيقت، درچنين محيطي به وجود مي آيند: زايشگاه ستاره اي ! يکي از معروف ترين محيط هاي ميان ستاره اي، سحابي جباراست که حتي مي توان آن را با چشم برهنه (غير مسلح)، البته در آسماني صاف وبدون آلودگي هوا يا آلودگي نوري، مانند توده ابري محو در پايين کمربند صورت فلکي جبار مشاهده کرد. اخترشناسان محيط هاي ميان ستاره اي را براساس گسترده ي چگالي يا دماي شان تقسيم بندي مي کنند. ابرهاي مولکولي غول پيکر، با دمايي درحدود چند ده کلوين، بسيار سردند، اما از سوي ديگر، محيط هاي ميان ستاره اي گرم يا داغ ممکن است دمايي بين چند ده هزار تا يک ميليون کلوين داشته باشند. ساختار ونحوه ي توزيع چگالي دراين محيط ها يکنواخت نيست بلکه ساختاري آشوبناک ومتلاطم دارند. البته اين که چه سازوکارهايي ، انرژي لازم براي ايجاد تلاطم درمحيط ميان ستاره اي را تأمين مي کند، هنوز به درستي روشن نيست. ودقيقاً همين نايقيني درباره ي تلاطم محيط ميان ستاره اي است که شناخت فرايند هاي شکل گيري ستاره ها را دشوار مي کند. پرسش اين است: چگونه درمحيطي متلاطم- محيط ميان ستاره اي - به تدريج توده هايي متراکم شکل مي گيرند که درنهايت به ستاره تبديل مي شوند؟ توجه داريم که محيط ميان ستاره اي ممکن است کاملاً يونيده يا حتي خنثي باشد. در نتيجه، ميدان مغناطيسي نقش تعيين کننده اي دارد. از سوي ديگر چنين محيطي ممکن است، به دنبال فرايندهاي فيزيکي مختلف، انرژي گرمايي خود را از دست بدهد، يا، برعکس، پرتوهاي کيهاني به آن انرژي بدهند وآن را گرم کنند. بنابراين، پاسخ پرسشي که مطرح کرديم درگرو شناخت مجموعه اي پيچيده از عوامل فيزيکي مختلف است که درنهايت ساختار ونحوه ي تحول سامانه را تعيين مي کنند. اختر شناسان براي شبيه سازي ساختار محيط ميان ستاره اي، دقيقاً از همان مجموعه معادلاتي استفاده مي کنند که براي سيالات به کار مي برند. زيرا محيط ميان ستاره اي، درواقع، محيطي سيال است. اگر محيط مغناطيده نباشد، مجموعه معادلاتي که براي توصيف آن به کار مي روند به معادلات ناوير -استوکس مشهورند. واگر سامانه يونيده - ودرنتيجه مغناطيده - باشد، از شکل تعميم يافته ي معادلات ناوير - استوکس موسوم به معادلات مغناطوهيدروديناميک (يا هيدروديناميک مغناطيسي ) استفاده مي شود. والبته در شرايطي، از معادلات فيزيک پلاسما نيز استفاده مي شود. گرچه اين معادلات بسيار پيچيده به نظر مي رسند، همه ي آن ها بر پايه ي قوانين شناخته شده ي فيزيکي استوارند: نظير پايستگي جرم، تکانه ي خطي، وانرژي. البته درمکانيک اجسام صلب، همين قواني را داريم ولي درمورد محيط ميان ستاره اي، ازشکل مناسب اين قوانين براي محيطي سيال استفاده مي شود. بنابراين، اختر شناسان اصولاً بايد قادر باشند نحوه ي شکل گيري ستاره ها را براساس اين معادلات تعيين کنند. اما کار به همين سادگي ها هم نيست. علت اصلي آن، پيچيدگي هاي فوق العاده اين معادلات است که حتي به ياري ابريارانه نيز نمي توان شبيه سازي کاملاً موفقي داشت. اما جدا ازاين پيچيدگي ها مي توان درحالت هاي ساده توصيفي نسبتاً دقيق از نحوه ي شکل گيري توده ها درمحيط ميان ستاره اي ارايه کرد. وضعيتي را مجسم کنيد که محيط ميان ستاره اي، چگالي يکنواختي داشته باشد. براي ساده شدن بحث، فرض مي کنيم که چگالي فقط به يک مختصه بستگي داشته باشد. اکنون، به علتي که فعلاً خيلي مهم نيست، افت وخيزهاي اندکي درسامانه ايجاد مي شود. به بيان ديگر چگالي دربرخي نقاط، کمي ازمقدار ميانگين بيشتر ودربرخي نقاط ديگر کمي از مقدار ميانگين کمتر مي شود. اجازه مي دهيم سامانه تحول پيدا کند- براساس معادلاتي که دربالا اشاره شد. حالا پرسش اين است: آيا اين افت وخيزهاي چگالي با زمان رشد پيدا خواهند کرد؟ يا اين که همچنان کوچک باقي مي مانند؟ درصورتي که اين افت وخيزهاي چگالي با زمان رشد کنند، اصطلاحاً گفته مي شود که سامانه ناپايدار شده است. وبه اين ترتيب، امکان شکل گيري توده اي متراکم - به دنبال رشد افت وخيزها - فراهم مي شود. آنچه که شرح آن را گفتيم دقيقاً همان مسئله اي است که حدود يک قرن پيش سرجيمز جينز (1877- 1946)، اخترشناس، فيزيک دان و رياضي دان بريتانيايي، بررسي کرد. او براين اساس، جرم بحراني را به دست آورد که اگر جرم توده اي از آن بيشتر باشد، توده تحت تأثير جاذبه ي گرانشي خود مي رمبد. اين جرم بحراني، امروزه دربين اخترشناسان به جرم جينز مشهور است. برهمين اساس، مي توان کمترين شعاع لازم براي رمبش توده اي ابري را نيز محاسبه کرد که به شعاع جينز مشهوراست. مثلاً ناحيه هاي HI، که از هيدروژن خنثي تشکيل شده اند، داراي چگالي درحدود 10 منفي 18 کيلوگرم برمتر مکعب اند. براي چنين محيطي، جرم جينز تقريباً 1500 برابر جرم خورشيد مي شود. يعني براي اين توده اي ابر دراين ناحيه برمبد، کمترين جرم لازم همين مقدار است. به بيان ديگر، اگر جرم توده اي کمتر ازاين مقدار باشد، تحت تأثير جاذبه اي گرانشي خود نمي تواند برمبد. اين درحالي است که مشاهدات، جرم توده هاي ناحيه هاي HIرا از مرتبه ي 1 تا 100 برابر جرم خورشيد به دست مي دهند بنابراين، براساس معيار جينز، ابرهاي اين ناحيه ها از نظر گرانشي پايدارند. اين درحالي است که چگالي ابرهاي مولکولي غول پيکر ممکن است 30 برابر بيشتر از ناحيه هاي HI باشد و، درنتيجه، جرم جينز درحدود 8 برابر جرم خورشيد مي شود مشاهدات نيز جرم توده ها در ابرهاي مولکولي غول را از مرتبه ي 10 برابر جرم خورشيد به دست مي دهند. اين به آن معناست که توده هاي ابري دراين سامانه ها از گرانشي ناپايدارند وممکن است در آستانه ي رمبش گرانشي - وتبديل به يک ستاره - باشند. البته معيار جينز صرفاً تخميني ابتدايي وبسيار ساده است. با اين حال، اگر توده اي با بيش از جرم جينز مشاهده شود ولي بدون رمبش گرانشي، مي توان ننتيجه گرفت عامل يا عواملي در برابر رمبش گرانشي مقاومت مي کنند وباعث مي شوند که توده ي ابري از نظر گرانشي پايدار باشد. اين عامل ممکن است نيروي ناشي از ميدان مغناطيسي باشد. ولي به هرحال زماني که توده ي ابري وارد مرحله ي رمبش گرانشي شد اين فرايند، تا زماني که توده اي بسيار چگالي درمرکز ابر شکل بگيرد، ادامه مي يابد. وبه محض اين که چگالي ودماي مرکزي آن قدر زياد شد که فرايند گداخت هسته اي آغاز شود، انرژي ناشي از اين سازوکار آن چنان فشار گرمايي (يا تابشي) ايجاد مي کند که در نهايت توده ي ابري به حالتي تعادلي بين نيروي ناشي از گرانش خود سامانه و فشار گرمايي به سمت بيرون مي رسد و درچنين وضعيتي است که ستاره اي پا به عرصه ي وجود مي گذارد! رمبش گرانشي پيش ستاره اما مرحله ي رمبش گرانشي يک پيش ستاره را چگونه توصيف مي کنيم؟ تلاش ها براي درک وشناخت توده ي رمبش گرانشي از دهه ي 1340/ 1960 آغاز شد. والبته، هنوز هم نايقيني هاي بسياري در اين زمينه وجود دارد. اخترشناساني نظير لارسون، پنستون، شو وهانتر، هر يک مستقل از ديگران، موفق شدند پاسخ هايي نيمه تحليلي براي معادلات حاکم بر رمبش گرانشي يک ابر کروي داراي خود- گرانش ارايه کنند که امروزه بسيار از آن ها استفاده مي شود. مثلاً، صرف نظر از جزييات اين پاسخ ها، کل فرايند رمبش يک ابر تقريباً چه مدت طول مي کشد؟ مي توان، براي سادگي، حالتي را در نظر گرفت که ابر کروي درحال رمبش است ونيروي ناشي از فشار گرمايي، درمقايسه با نيروي ناشي ازگرانش، ناچيزاست. درچنين شرايطي ذره اي فرضي درسطح ابر، درحالت سقوط آزاد به سمت ناحيه هاي مرکزي ابر، تحت تأثير جاذبه ي گرانشي است. بنابراين، مدت زماني که طول مي کشد تا ذره از فاصله اي برابر شعاع ابر به ناحيه هاي مرکزي ابر برسد، تقريباً، مقياس زماني رمبش گرانشي ابر را به دست مي دهد که به مقياس زماني سقوط آزاد مشهوراست. اين مقياس زماني متناسب با عکس جذر چگالي به دست مي آيد. مثلاً، براي توده اي ابري درابرهاي مولکولي غول پيکر، مقياس زماني سقوط آزاد حدود 400 هزار سال به دست مي آيد که به روشني درمقايسه با ساير مقياس هاي زماني نجومي ، زمان بسيار کوتاهي است. ازاين روست که اخترشناسان معتقدند فرايند رمبش ستاره ها وتولدشان، فرايندي سريع است. محاسبات دقيق تر، که عوامل ديگري نظير ميدان مغناطيسي يا تلاطم را در نظر مي گيرند، زماني رمبش گرانشي را حداکثر حدود يک ميليون سال به دست مي دهند که بازهم، درمقاسيه با مثلاً عمر يک ستاره، زماني کوتاهي است. با اين حال، کل جرم محيط ميان ستاره اي به ستاره تبديل نمي شود. درکمال شگفتي، مشاهدات نشان مي دهند که جرم کل ستاره هاي يک سامانه ي ابر مولکولي غول پيکر حدود 3 تا 6 درصد جرم کل ابر مولکولي است. بنابراين، سازکارهايي که منجر به شکل گيري ستاره ها مي شوند چندان کارايي ندارند. گرچه نظريه هاي مختلفي براي توجيه اين مسئله - به ويژه طي سال هاي اخير - ارايه شده اند هنوز به درستي نمي دانيم چرا فقط کسر کوچکي از جرم کل يک سامانه ي محيط ميان ستاره اي، در نهايت، به ستاره تبديل مي شود. نکته ي مهم ديگر اين است که ستاره ها معمولاً به صورت گروهي شکل مي گيرند. اين گروه ها ممکن است کم عضوباشند يا مانند خوشه اي پرجمعيت ديده شوند. بنابراين، هر نظريه اي که براي نحوه ي شکل گيري ستاره ها ارايه شود بايد بتواند توضيح بدهد چرا تولد ستاره هاي منفرد فرايندي نادر است. مدل استاندارد براي شکل گيري ستاره هاي کم جرم، در سال 1366/ 1987، فرانک شو وهمکارانش مدلي را ارايه کردند که خيلي زود به مدل استاندارد شکل گيري ستاره ها مشهور شد. اين مدل، برخلاف سادگي اش، به خوبي مي تواند بخشي از سازوکارهاي منجر به تولد ستاره هاي کم جرم را توضيح دهد ودقيقاً به همين سبب هنوز هم اين مدل مبناي کار بسياري از اختر شناسان است. البته، به ويژه طي چند سال اخير، ناتواني هاي مدل استاندارد بيش از پيش روشن شده است. اما مدل استاندارد چيست؟ فرض کنيم دريک محيط ميان ستاره اي به دنبال ناپايداري گرانشي (جينز)، توده اي نسبتاً متراکم تر از محيط اطراف شکل بگيرد. فعلاً به دنبال شناخت عامل يا عواملي که توده ي متراکم را ايجاد مي کند. نيستيم. اين توده درمحدوده ي نور مرئي تابش چنداني ندارد. ولي تابش هاي فروسرخ يا حتي راديويي گسيل مي کند. اين توده تحت تأثير جاذبه ي گرانشي خود، به تدريج، متراکم تر مي شود تا اين که نيروهاي وارد بر هر قسمت از آن به تعادل مي رسند. براي ساده شدن بحث، فرض کنيم که توده ي ساختاري کروي دارد. دراين صورت، نيروهاي وارد بر هر لايه ي دروني توده عبارت اند از نيروي ناشي از جاذبه ي گرانشي، نيروي ناشي از فشار گرمايي (يا حتي تابشي) ونيروي ناشي از ميدان مغناطيسي. درحالت تعادل، برآيند اين نيروها صفر است. بنابراين، پس از مدتي توده ي شکل گرفته به حالت تعادل مي رسد، ولي هنوز آن قدر متراکم نشده است که به ستاره تبديل شود. پس بايد به گونه اي از وضعيت تعادلي خارج شود و رمبش گرانشي ادامه يابد. درمدل استاندارد شو وهمکارانش، اين نيروي ناشي از ميدان مغناطيسي است که به تدريج به دنبال سازوکاري موسوم به پخش دو قطبي کاهش مي يابد وتوده از وضعيت تعادلي خارج مي شود. البته دراين جا نمي توان در باره ي جزييات فرايندهاي مربوط به ميدان مغناطيسي بحث کرد. اما نتيجه اين مي شود که توده ازحالت تعادلي خارج مي شود ولايه هاي دروني تر با سرعت بيشتري به سمت مرکز توده مي رمبند. يعني رمبش «از درون به بيرون» خواهيم داشت. دراين مرحله، به علت حرکت دوراني توده، هر چه سامانه متراکم تر مي شود توده از حالت کروي بيشتر خارج مي شود وساختار کشيده تر پيدا مي کند. درنهايت توده اي متراکم در مرکز سامانه ايجاد مي شود به همراه قرصي چرخان دراطرافش. ممکن است اين قرص به تدريج محو شود واز بين برود واگر به اندازه ي کافي پرجرم باشد، سيارات از آن شکل بگيرند. اگر دقت کنيم دومسئله ي کليدي درباره مدل استاندارد وجود دارد. يکي اين که توده ي نخستين چگونه شکل مي گيرد، وديگر آن که آيا رصدها وجود توده هايي را، که درمرحله ي تعادلي باشند، تأييد مي کنند؟ واقعيت اين است که مدلي استاندارد نمي تواند توضيح دهد توده ي نخستين چگونه شکل مي گيرد واين نقطه ضعف اصلي اين مدل است. اما مشاهدات نشان مي دهند. بخشي از توده هاي موجود درمحيط ميان ستاره اي، ظاهراً، در وضعيت تعادلي به سر مي برند. البته بحث وجدل دراين زمينه بسيار وجود دارد. زيرا مشاهدات جديدتر توانست در توده هايي، که براساس مشاهدات يک دهه پيش درحالت تعادل به نظر مي رسيدند، حرکت مواد دروني به سمت ناحيه هاي مرکزي شان را آشکار کند که به روشني حکايت از رمبش گرانشي دارد. به همين علت ها، به ويژه طي سال هاي اخير، اخترشناسان تلاش مي کنند مشاهدات دقيق تري از توده هاي موجود در محيط هاي ميان ستاره اي انجام بدهند. ولي البته اين کار ساده اي نيست. زيرا، همان طور که اشاره شد، چنين سامانه هايي تا زماني که به ستاره تبديل نشده اند. تابش اندکي درمحدوده ي نور مرئي دارند. بيشتر تابش آن ها درمحدوده ي طول موج هاي راديويي وفرو سرخ است والبته آشکار سازي تابش هاي فرو سرخ نياز به ابزارهاي بسيار دقيقي دارد. ... وتلاش ها ادامه دارند. تا همين چند سال پيش، بسياري از اختر شناسان براي درک فرايند هاي شکل گيري ستاره ها در محيط ميان ستاره اي از مدل استاندارد کمک مي گرفتند. ولي به تدريج به دنبال مشاهدات دقيق تر از محيط هاي ميان ستاره اي وامکان شبيه سازي اين سامانه ها با ابررايانه ها اين نکته روشن شده است که محيط ميان ستاره اي ساختاري منظم وآرام ندارد. درحقيقت، محيط هاي ميان ستاره اي بسيار آشوبناک و «متلاطم » اند. وهمين تلاطم موجود درسامانه است که عامل نخستين شکل گيري بسياري از ساختارهاي مشاهده شده درمحيط هاي ميان ستاره اي است. دراين رهيافت، توده هايي که درمحيط ميان ستاره اي مشاهده مي شوند هيچ گاه به حالت تعادل نمي رسند و درحقيقت، ساختارهايي «گذرا» هستند. يعني به دنبال تلاطم سامانه بخشي ازآن متراکم مي شود، مدتي دراين وضعيت مي ماند، وسپس دوباره درمحيط محو مي شود. البته اگر توده ي شکل گرفته به اندازه ي کافي جرم داشته باشد، شايد تحت تأثير جاذبه هاي گرانشي خود، بتواند وارد مرحله ي رمبش گرانشي شود- که دراين صورت ستاره خواهد شد. امروزه، دراين نکته، که محيط ميان ستاره اي داراي ساختاري تلاطمي است، ديگر شکي وجود ندارد، ولي مسئله اين است که چه سازوکارهايي اين تلاطم را به وجود مي آورند. زيرا انرژي دريک سامانه ي متلاطم به سرعت ميرا مي شود. بنابراين، بايد سازوکاري وجود داشته باشد که بتواند به طور مستمر انرژي به سامانه تزريق کند که تلاطم استمرار بيابد. اخترشناسان حدود ده خاستگاه تلاطم درمحيط هاي ميان ستاره اي پيشنهاد کرده اند؛ نظيرانفجارهاي ابونواختري، بادهاي ستاره اي و... اما هنوز به درستي روشن نيست کدام يک نقش تعيين کننده اي دارند وبه علاوه، سازوکارهايي که انرژي را وارد اين سامانه مي کنند کاملاً شناخته شده نيستند. از سوي ديگر، برخي از اخترشناسان براين باورند که ترکيبي ازمدل استاندارد وتلاطمي مي تواند به شکل بهتري نحوه ي شکل گيري ستاره ها را توضيح دهد. تلاش دراين راستا همچنان ادامه دارد. منبع:نشريه نجوم، شماره 198. /ج
این صفحه را در گوگل محبوب کنید
[ارسال شده از: راسخون]
[مشاهده در: www.rasekhoon.net]
[تعداد بازديد از اين مطلب: 403]
صفحات پیشنهادی
آغاز زندگي ستاره ها
آغاز زندگي ستاره ها نويسنده: محسن شاد مهري زماني نه چندان دور تصور اين که نقطه اي نوراني در آسمان شب، وراي آرامش ظاهري شان، سيري تحولي را پشت سر گذاشته اند تا ...
آغاز زندگي ستاره ها نويسنده: محسن شاد مهري زماني نه چندان دور تصور اين که نقطه اي نوراني در آسمان شب، وراي آرامش ظاهري شان، سيري تحولي را پشت سر گذاشته اند تا ...
تولد ستاره ها
زندگی یک ستاره را میتوان به شش دوره تقسیم کرد : تولد (سحابی) نوباوگی (مرحلهی ... اندازهی ستارهها معمولاً بسیار بزرگ است, ولی فضای بین ستارگان (فضای میان ... در آغاز, یعنی وقتی که نخستین نسل ستارگان به وجود آمدند, سحابیها فقط مرکب از ...
زندگی یک ستاره را میتوان به شش دوره تقسیم کرد : تولد (سحابی) نوباوگی (مرحلهی ... اندازهی ستارهها معمولاً بسیار بزرگ است, ولی فضای بین ستارگان (فضای میان ... در آغاز, یعنی وقتی که نخستین نسل ستارگان به وجود آمدند, سحابیها فقط مرکب از ...
زندگی ستاره ها
View Full Version : زندگی ستاره ها YAGHOT SEFID22nd February 2010, 09:06 AMزندگی ستاره ها . ... بعد از این ، تغییراتی در لایههای درونی ستاره آغاز میشود.
View Full Version : زندگی ستاره ها YAGHOT SEFID22nd February 2010, 09:06 AMزندگی ستاره ها . ... بعد از این ، تغییراتی در لایههای درونی ستاره آغاز میشود.
برنامه راديويي «با ستارهها» امروز به زندگي شهيد صادقي ميپردازد
برنامه راديويي «با ستارهها» امروز به زندگي شهيد صادقي ميپردازد گروه ... 1353 با دختر خالهاش معظمه صادقي ازدواج كرد و در خانهاي استيجاري زندگي مشترك را آغاز كردند.
برنامه راديويي «با ستارهها» امروز به زندگي شهيد صادقي ميپردازد گروه ... 1353 با دختر خالهاش معظمه صادقي ازدواج كرد و در خانهاي استيجاري زندگي مشترك را آغاز كردند.
پخش با ستارهها از 30 شهریور شروع میشود
پخش با ستارهها از 30 شهریور شروع میشود-پخش برنامه با ستارهها به تهیهکنندگی و کارگردانی علی حجازی از روز دوشنبه 30 شهریور ساعت 15 از شبکه سه آغاز میشود.
پخش با ستارهها از 30 شهریور شروع میشود-پخش برنامه با ستارهها به تهیهکنندگی و کارگردانی علی حجازی از روز دوشنبه 30 شهریور ساعت 15 از شبکه سه آغاز میشود.
ستاره زندگی دیگران درگذشت
ستاره زندگی دیگران درگذشت-اولریش موهه، ستاره فیلم برنده اسکار زندگی ... دنیا آمد و فعالیت بازیگری را از اوایل دهه 1980 در فیلم ها و مجموعه های تلویزیونی آغاز کرد.
ستاره زندگی دیگران درگذشت-اولریش موهه، ستاره فیلم برنده اسکار زندگی ... دنیا آمد و فعالیت بازیگری را از اوایل دهه 1980 در فیلم ها و مجموعه های تلویزیونی آغاز کرد.
برنامه «با ستارهها» به زندگي شهيد «ناصر باباجانيان» ميپردازد
برنامه «با ستارهها» به زندگي شهيد «ناصر باباجانيان» ميپردازد گروه خبرنگاران افتخاري ... كيانيبيدگلي: برنامه راديويي با ستارهها، در ادامه سري برنامههاي بررسي زندگي سرداران شهيد، به زندگي و ... آغاز اكران «جدايي نادر از سيمين» در سينماهاي مكزيك.
برنامه «با ستارهها» به زندگي شهيد «ناصر باباجانيان» ميپردازد گروه خبرنگاران افتخاري ... كيانيبيدگلي: برنامه راديويي با ستارهها، در ادامه سري برنامههاي بررسي زندگي سرداران شهيد، به زندگي و ... آغاز اكران «جدايي نادر از سيمين» در سينماهاي مكزيك.
نکاتی درمورد زندگی خصوصی ستاره ها از زبان خودشان
همه ما، يا حداقل خيلی از ما، دوست داريم در مورد ستارهها بدانيم، اينكه آنها كجا به دنيا آمدهاند، چگونه ستاره شدهاند و چه هدفی دارند و چه نوع زندگی و ... بهترين راه پاسخ گرفتن هم ...
همه ما، يا حداقل خيلی از ما، دوست داريم در مورد ستارهها بدانيم، اينكه آنها كجا به دنيا آمدهاند، چگونه ستاره شدهاند و چه هدفی دارند و چه نوع زندگی و ... بهترين راه پاسخ گرفتن هم ...
«با ستاره ها» زندگي شهيد باباجانيان را روايت مي كند
«با ستاره ها» زندگي شهيد باباجانيان را روايت مي كند تهران- خبرگزاري ايسكانيوز: برنامه راديويي «با ستاره ها» ... نخستين جلسه مجلس شوراي اسلامي در سال 91 آغاز شد.
«با ستاره ها» زندگي شهيد باباجانيان را روايت مي كند تهران- خبرگزاري ايسكانيوز: برنامه راديويي «با ستاره ها» ... نخستين جلسه مجلس شوراي اسلامي در سال 91 آغاز شد.
«با ستاره ها» زندگي شهيد شيخ خيريان را روايت مي كند
«با ستاره ها» زندگي شهيد شيخ خيريان را روايت مي كند تهران - حيات برنامه راديويي «با ستاره ها» فردا (يك شنبه) به بررسي زندگي سردار شهيد «قربانعلي شيخ خيريان» مي پردازد. به گزارش حيات به نقل از ... آغاز توزيع كارت آزمون ارشد دانشگاه آزاد.
«با ستاره ها» زندگي شهيد شيخ خيريان را روايت مي كند تهران - حيات برنامه راديويي «با ستاره ها» فردا (يك شنبه) به بررسي زندگي سردار شهيد «قربانعلي شيخ خيريان» مي پردازد. به گزارش حيات به نقل از ... آغاز توزيع كارت آزمون ارشد دانشگاه آزاد.
-
گوناگون
پربازدیدترینها