تور لحظه آخری
امروز : پنجشنبه ، 24 آبان 1403    احادیث و روایات:  امام صادق (ع):مؤمن چون خشمگين شود، خشمش او را از حق بيرون نبرد و چون خشنود شود، خشنوديش او را به ب...
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

صرافی ارکی چنج

صرافی rkchange

سایبان ماشین

دزدگیر منزل

تشریفات روناک

اجاره سند در شیراز

قیمت فنس

armanekasbokar

armanetejarat

صندوق تضمین

Future Innovate Tech

پی جو مشاغل برتر شیراز

لوله بازکنی تهران

آراد برندینگ

خرید یخچال خارجی

موسسه خیریه

واردات از چین

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

طراحی سایت تهران سایت

irspeedy

درج اگهی ویژه

تعمیرات مک بوک

دانلود فیلم هندی

قیمت فرش

درب فریم لس

زانوبند زاپیامکس

روغن بهران بردبار ۳۲۰

قیمت سرور اچ پی

خرید بلیط هواپیما

بلیط اتوبوس پایانه

قیمت سرور dl380 g10

تعمیرات پکیج کرج

لیست قیمت گوشی شیائومی

خرید فالوور

بهترین وکیل کرج

بهترین وکیل تهران

اوزمپیک چیست

خرید اکانت تریدینگ ویو

خرید از چین

خرید از چین

تجهیزات کافی شاپ

نگهداری از سالمند شبانه روزی در منزل

بی متال زیمنس

ساختمان پزشکان

ویزای چک

محصولات فوراور

خرید سرور اچ پی ماهان شبکه

دوربین سیمکارتی چرخشی

همکاری آی نو و گزینه دو

کاشت ابرو طبیعی و‌ سریع

الک آزمایشگاهی

الک آزمایشگاهی

خرید سرور مجازی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

لوله و اتصالات آذین

قرص گلوریا

 






آمار وبسایت

 تعداد کل بازدیدها : 1829423141




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

تابع گاما - Gamma Function


واضح آرشیو وب فارسی:فان پاتوق: تابع گاما - Gamma Function



مسئله یافتن تابعی که مقادیرش به ازای آرگومان های صحیح و مثبت فاکتوریل های ۱=!۱و ۲=!۲ و ۶=!۳ و ... و 1.2.3...n!= n باشند توسط اویلر (Euler) به کمک انتگرال ناسره حل شد.
تابع گاما (کامل)

به صورت بسط فاکتوریل (factorial) به آرگومان های عددی مختلط و حقیقی است. این تابع با معادله ی زیر به فاکتوریل مرتبط می شود:


که این نماد مرسوم با توجه به گفته ی لژاندر به طور مختصری مشکل تر از نماد ساده تر معرفی شده توسط گائوس

است (Gauss 1812; Edwards 2001, p. 8).
این تابع در همه جا به جز در ...,

,



تحلیلی (analytic) است، و باقیمانده ی آن در

عبارت است از


هیچ نقطه ی

ای را نمی توان یافت که در آن

.
در استفاده ی مرسوم برای نمایش سری توانی از یک تابع گاما، یک قرارداد نمادگذاری وجود دارد. در حالیکه مولفانی همچون (Watson (1939 بر استفاده از

(یعنی بکارگیری از یک قرارداد تابع مثلثاتی-گون) تاکید دارند، طبق سنت نمادگذاری

استفاده می شود.
تابع گاما را می توان به صورت یک انتگرال معین (definite integral) برای

تعریف کرد (شکل تعریف شده توسط اویلر)
(*)










یا


تابع گامای کامل را می توان همچنین به تابع گامای ناتمام (incomplete gamma function) بالایی

و تابع گامای ناتمام پایینی

بسط داد.


نمودار قسمت های حقیقی و موهومی

در صفحه ی مختلط در شکل بالا نشان داده شده است.
با انتگرال گیری جز به جز از معادله (*) برای یک آرگومان حقیقی، مشاهده می شود که


























-






این صفحه را در گوگل محبوب کنید

[ارسال شده از: فان پاتوق]
[مشاهده در: www.funpatogh.com]
[تعداد بازديد از اين مطلب: 831]

bt

اضافه شدن مطلب/حذف مطلب




-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن