تور لحظه آخری
امروز : سه شنبه ، 20 شهریور 1403    احادیث و روایات:  امام علی (ع):انسان، با نيّت خوب و اخلاق خوب، به تمام آنچه در جستجوى آن است، از زندگى خوش و امني...
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

تریدینگ ویو

کاشت ابرو

لمینت دندان

لیست قیمت گوشی شیائومی

صرافی ارکی چنج

صرافی rkchange

دزدگیر منزل

تشریفات روناک

اجاره سند در شیراز

قیمت فنس

armanekasbokar

armanetejarat

صندوق تضمین

طراحی کاتالوگ فوری

Future Innovate Tech

پی جو مشاغل برتر شیراز

لوله بازکنی تهران

آراد برندینگ

سایبان ماشین

بهترین وکیل تهران

وکیل کرج

خرید تیشرت مردانه

وام لوازم خانگی

نتایج انتخابات ریاست جمهوری

خرید ابزار دقیق

خرید ریبون

موسسه خیریه

خرید سی پی کالاف

واردات از چین

دستگاه تصفیه آب صنعتی

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

کپسول پرگابالین

کرکره برقی تبریز

خرید نهال سیب سبز

قیمت پنجره دوجداره

بازسازی ساختمان

طراحی سایت تهران سایت

دیوار سبز

irspeedy

درج اگهی ویژه

ماشین سازان

تعمیرات مک بوک

دانلود فیلم هندی

قیمت فرش

درب فریم لس

شات آف ولو

تله بخار

شیر برقی گاز

شیر برقی گاز

خرید کتاب رمان انگلیسی

زانوبند زاپیامکس

 






آمار وبسایت

 تعداد کل بازدیدها : 1814812421




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

نانو تکنولوژی و پزشکی مقالات


واضح آرشیو وب فارسی:سایت ریسک: View Full Version : نانو تکنولوژی و پزشکی |مقالات| *Necromancer06-07-2006, 01:38 AMتعریف نانو به بررسی و فناوری ساخت ذراتی که حداقل یکی از ابعاد فضایی آنها در محدودهٔ ۱ تا ۱۰۰ نانومتر باشد، می‌پردازد. نانوتکنولوژی، توانمندی تولید مواد، ابزارها و سیستم‌های جدید با در دست گرفتن کنترل در سطوح ملکولی و اتمی و استفاده از خواصی است که در آن سطوح ظاهر می¬شود. از همین تعریف ساده برمی¬آید که نانوتکنولوژی یک رشته جدید نیست، بلکه رویکردی جدید در تمام رشته هاست. برای نانوتکنولوژی کاربردهایی را در حوزه‌های مختلف از غذا، دارو، تشخیص پزشکی و بیوتکنولوژی تا الکترونیک، کامپیوتر، ارتباطات، حمل¬‌و¬نقل، انرژی، محیط زیست، مهندسی مواد، هوافضا و امنیت ملی برشمرده‌اند. کاربردهای وسیع این عرصه به همراه پیامدهای اجتماعی، سیاسی و حقوقی آن، این فناوری را به¬عنوان یک زمینه فرا رشته¬ای و فرابخش مطرح نموده‌است. كاربرد نانوتكنولوژي در پزشكي ترجمه: عبدالكريم مهروز يك باكتري مغناطيسي مي تواند در امتداد ميدان مغناطيسي زمين قرار گيرد و مطابق با آن بالا يا پايين برود تا مقصد مورد نظرش را پيدا كند. در سال 1966 فيلمي تخيلي با عنوان «سفر دريايي شگفت انگيز» اهالي سينما را به ديدن نمايشي جسورانه از كاربرد نانوتكنولوژي در پزشكي ميهمان كرد. گروهي از پزشكان جسور و زيردريايي پيشرفته شان با شيوه اي اسرارآميز به قدري كوچك شدند كه مي توانستند در جريان خون بيمار سير كنند و لخته خوني را در مغزش از بين ببرند كه زندگي او را تهديد مي كرد. با گذشت 36 سال از آن زمان، براي ساختن وسايل پيچيده حتي در مقياس هاي كوچك تر گام هاي بلندي برداشته شده است. اين امر باعث شده برخي افراد باور كنند كه چنين دخالت هايي در پزشكي امكان پذير است و روبات هاي بسيار ريز قادر خواهند بود در رگ هاي هر كسي سفر كنند. همه جانداران از سلول هاي ريزي تشكيل شده اند كه خود آنها نيز از واحدهاي ساختماني كوچك تر در حد نانومتر (يك ميلياردم متر) نظير پروتئين ها، ليپيدها و اسيدهاي نوكلئيك تشكيل شده اند. از اين رو، شايد بتوان گفت كه نانوتكنولوژي به نحوي در عرصه هاي مختلف زيست شناسي حضور دارد. اما اصطلاح قراردادي «نانوتكنولوژي» به طور معمول براي تركيبات مصنوعي استفاده مي شود كه از نيمه رساناها، فلزات، پلاستيك ها يا شيشه ساخته شده اند. نانوتكنولوژي از ساختارهايي غيرآلي بهره مي گيرد كه از بلورهاي بسيار ريزي در حد نانومتر تشكيل شده اند و كاربردهاي وسيعي در زمينه تحقيقات پزشكي، رساندن داروها به سلول ها، تشخيص بيماري ها و شايد هم درمان آنها پيدا كرده اند. در برخي محافل نگراني هاي شديدي در مورد جنبه منفي اين فناوري به وجود آمده است؛ آيا اين نانوماشين ها نمي توانند از كنترل خارج شده و كل جهان زنده را نابود كنند؟ با وجود اين به نظر مي رسد فوايد اين فناوري بيش از آن چيزي باشد كه تصور مي رود. براي مثال، مي توان با بهره گيري از نانوتكنولوژي وسايل آزمايشگاهي جديدي ساخت و از آنها در كشف داروهاي جديد و تشخيص ژن هاي فعال تحت شرايط گوناگون در سلول ها، استفاده كرد. به علاوه، نانوابزارها مي توانند در تشخيص سريع بيماري ها و نقص هاي ژنتيكي نقش ايفا كنند. طبيعت نمونه زيبايي از سودمندي بلورهاي غيرآلي را در دنياي جانداران ارائه مي كند. باكتري هاي مغناطيسي، جانداراني هستند كه تحت تاثير ميدان مغناطيسي زمين قرار مي گيرند. اين باكتري ها فقط در عمق خاصي از آب يا گل ولاي كف آن رشد مي كنند. اكسيژن در بالاي اين عمق بيش از حد مورد نياز و در پايين آن بيش از حد كم است. باكتري اي كه از اين سطح خارج مي شود بايد توانايي شنا كردن و برگشت به اين سطح را داشته باشد. از اين رو، اين باكتري ها مانند بسياري از خويشاوندان خود براي جابه جا شدن از يك دم شلاق مانند استفاده مي كنند. درون اين باكتري ها زنجيره اي با حدود 20 بلور مغناطيسي وجود دارد كه هر كدام بين 35 تا 120 نانومتر قطر دارند. اين بلورها در مجموع يك قطب نماي كوچك را تشكيل مي دهند. يك باكتري مغناطيسي مي تواند در امتداد ميدان مغناطيسي زمين قرار گيرد و مطابق با آن بالا يا پايين برود تا مقصد مورد نظرش را پيدا كند. اين قطب نما اعجاز مهندسي طبيعت در مقياس نانو است. اندازه بلورها نيز مهم است. هر چه ذره مغناطيسي بزرگ تر باشد، خاصيت مغناطيسي اش مدت بيشتري حفظ مي شود. اما اگر اين ذره بيش از حد بزرگ شود خود به خود به دو بخش مغناطيسي مجزا تقسيم مي شود كه خاصيت مغناطيسي آنها در جهت عكس يكديگرند. چنين بلوري خاصيت مغناطيسي كمي دارد و نمي تواند عقربه كارآمدي براي قطب نما باشد. باكتري هاي مغناطيسي قطب نماهاي خود را فقط از بلورهايي با اندازه مناسب مي سازند تا از آنها براي بقاي خود استفاده كنند. جالب است كه وقتي انسان براي ذخيره اطلاعات روي ديسك سخت محيط هايي را طراحي مي كند دقيقاً از اين راهكار باكتري ها پيروي مي كند و از بلورهاي مغناطيسي در حد نانو و با اندازه اي مناسب استفاده مي كند تا هم پايدار باشند و هم كارآمد. محققان در تلاش هستند تا از ذرات مغناطيسي در مقياس نانو براي تشخيص عوامل بيماري زا استفاده كنند. روش اين محققان نيز مانند بسياري از مهارت هايي كه امروزه به كار مي رود به آنتي بادي هاي مناسبي نياز دارد كه به اين عوامل متصل مي شوند. ذرات مغناطيسي مانند برچسب به مولكول هاي آنتي بادي متصل مي شوند. اگر در يك نمونه، عامل بيماري زاي خاصي مانند ويروس مولد ايدز مد نظر باشد، آنتي بادي هاي ويژه اين ويروس كه خود به ذرات مغناطيسي متصل هستند به آنها مي چسبند. براي جدا كردن آنتي بادي هاي متصل نشده، نمونه را شست وشو مي دهند. اگر ويروس ايدز در نمونه وجود داشته باشد، ذرات مغناطيسي آنتي بادي هاي متصل شده به ويروس، ميدان هاي مغناطيسي توليد مي كنند كه توسط دستگاه حساسي تشخيص داده مي شود. حساسيت اين مهارت آزمايشگاهي از روش هاي استاندارد موجود بهتر است و به زودي اصلاحات پيش بيني شده، حساسيت را تا چند صد برابر تقويت خواهد كرد. دنياي پيشرفته الكترونيك پر از مواد پخش كننده نور است. براي نمونه هر CDخوان، CD را با استفاده از نوري مي خواند كه از يك ديود ليزري مي آيد. اين ديود از يك نيمه رساناي غيرآلي ساخته شده است. هر تصوير، قسمت كوچكي از يك CD به اندازه يك مولكول پروتئين (در حد نانومتر) را مي كند. در نتيجه اين عمل يك نانو بلور نيمه رسانا يا به اصطلاح تجاري يك «نقطه كوانتومي» ايجاد مي شود. فيزيكداناني كه براي اولين بار در دهه 1960 نقاط كوانتومي را مطالعه مي كردند معتقد بودند كه اين نقاط در ساخت وسايل الكترونيكي جديد و وسايل ديد استفاده خواهند شد. تعداد انگشت شماري از اين محققان ابراز مي كردند كه از اين يافته ها مي توان براي تشخيص بيماري يا كشف داروهاي جديد كمك گرفت و هيچ كدام از آنان حتي در خواب هم نمي ديدند كه اولين كاربردهاي نقاط كوانتومي در زيست شناسي و پزشكي باشد. نقاط كوانتومي قابليت هاي زيادي دارند و در موارد مختلفي مورد استفاده قرار مي گيرند. يكي از كاربردهاي اين نقاط نيمه رسانا در تشخيص تركيبات ژنتيكي نمونه هاي زيستي است. اخيراً برخي محققان روش مبتكرانه اي را به كار بردند تا وجود يك توالي ژنتيكي خاص را در يك نمونه تشخيص دهند. آنان در طرح خود از ذرات طلاي 13 نانومتري استفاده كردند كه با DNA (ماده ژنتيكي) تزئين شده بود. اين محققان در روش ابتكاري خود از دو دسته ذره طلا استفاده كردند. يك دسته، حامل DNA بود كه به نصف توالي هدف متصل مي شد و DNA متصل به دسته ديگر به نصف ديگر آن متصل مي شد. DNA هدفي كه توالي آن كامل باشد به راحتي به هر دو نوع ذره متصل مي شود و به اين ترتيب دو ذره به يكديگر مربوط مي شوند. از آنجا كه به هر ذره چندين DNA متصل است، ذرات حامل DNA هدف مي توانند چندين ذره را به يكديگر بچسبانند. وقتي اين ذرات طلا تجمع مي يابند خصوصياتي كه باعث تشخيص آنها مي شود به مقدار چشم گيري تغيير مي كند و رنگ نمونه از قرمز به آبي تبديل مي شود. چون كه نتيجه اين آزمايش بدون هيچ وسيله اي قابل مشاهده است مي توان آن را براي آزمايش DNA در خانه نيز به كار برد. هيچ بحثي از نانوتكنولوژي بدون توجه به يكي از ظريف ترين وسايل در علوم امروزي يعني ميكروسكوپ اتمي كامل نمي شود. روش اين وسيله براي جست وجوي مواد مانند گرامافون است. گرامافون، سوزن نوك تيزي دارد كه با كشيده شدن آن روي يك صفحه، شيارهاي روي آن خوانده مي شود. سوزن ميكروسكوپ اتمي بسيار ظريف تر از سوزن گرامافون است به نحوي كه مي تواند ساختارهاي بسيار كوچك تر را حس كند. متاسفانه، ساختن سوزن هايي كه هم ظريف باشند و هم محكم، بسيار مشكل است. محققان با استفاده از نانو لوله هاي باريك از جنس كربن كه به نوك ميكروسكوپ متصل مي شود اين مشكل را حل كردند. با اين كار امكان رديابي نمونه هايي با اندازه فقط چند نانومتر فراهم شد. به اين ترتيب، براي كشف مولكول هاي زنده پيچيده و برهم كنش هايشان وسيله اي با قدرت تفكيك بسيار بالا در اختيار محققان قرار گرفت. اين مثال و مثال هاي قبل نشان مي دهند كه ارتباط بين نانوتكنولوژي و پزشكي اغلب غيرمستقيم است به نحوي كه بسياري از كارهاي انجام شده، در زمينه ساخت يا بهبود ابزارهاي تحقيقاتي يا كمك به كارهاي تشخيصي است. اما در برخي موارد، نانوتكنولوژي مي تواند در درمان بيماري ها نيز مفيد باشد. براي مثال مي توان داروها را درون بسته هايي در حد نانومتر قرار داد و آزاد شدن آنها را با روش هاي پيچيده تحت كنترل در آورد. يكي از نانوساختارهايي كه براي ارسال دارو يا مولكول هايي مانند DNA به بافت هاي هدف ساخته شده، «دندريمر»ها هستند. اين مولكول هاي آلي مصنوعي با ساختارهاي پيچيده براي اولين بار توسط «دونالد توماليا» ساخته شدند. اگر شاخه هاي درختي را در يك توپ اسفنجي فرو ببريد به نحوي كه در جهت هاي مختلف قرار گيرند مي توان شكلي شبيه يك مولكول دندريمر را ايجاد كرد. دندريمرها مولكول هايي كروي و شاخه شاخه هستند كه اندازه اي در حدود يك مولكول پروتئين دارند. دندريمرها مانند درختان پرشاخه و برگ داراي فضاهاي خالي هستند، يعني تعداد زيادي حفرات سطحي دارند. دندريمرها را مي توان طوري ساخت كه فضاهايي با اندازه هاي مختلف داشته باشند. اين فضاها فقط براي نگه داشتن عوامل درماني هستند. دندريمرها بسيار انعطاف پذير و قابل تنظيم اند. همچنين آنها را مي توان طوري ساخت كه فقط در حضور مولكول هاي محرك مناسب، خود به خود باد كنند و محتويات خود را بيرون بريزند. اين قابليت اجازه مي دهد تا دندريمرهاي اختصاصي بسازيم تا بار دارويي خود را فقط در بافت ها يا اندام هايي آزاد كنند كه نياز به درمان دارند. دندريمرها مي توانند براي انتقال DNA به سلول ها جهت ژن درماني نيز ساخته شوند. اين شيوه نسبت به روش اصلي ژن درماني يعني استفاده از ويروس هاي تغيير ژنتيكي يافته بسيار ايمن تر هستند. همچنين محققان ذراتي به نام نانوپوسته ساخته اند كه از جنس شيشه پوشيده شده با طلا هستند. اين نانوپوسته ها مي توانند به صورتي ساخته شوند تا طول موج خاصي را جذب كنند. اما از آنجا كه طول موج هاي مادون قرمز به راحتي تا چند سانتي متر از بافت نفوذ مي كنند، نانوپوسته هايي كه انرژي نوراني را در نزديكي اين طول موج جذب مي كنند بسيار مورد توجه قرار گرفته اند. بنابراين، نانوپوسته هايي كه به بدن تزريق مي شوند مي توانند از بيرون با استفاده از منبع مادون قرمز قوي گرما داده شوند. چنين نانوپوسته هايي را مي توان به كپسول هايي از جنس پليمر حساس به گرما متصل كرد. اين كپسول ها محتويات خود را فقط زماني آزاد مي كنند كه گرماي نانوپوسته متصل به آن باعث تغيير شكلش شود. يكي از كاربردهاي شگرف اين نانوپوسته ها در درمان سرطان است. مي توان نانوپوسته هاي پوشيده شده با طلا را به آنتي بادي هايي متصل كرد كه به طور اختصاصي به سلول هاي سرطاني متصل مي شوند. از لحاظ نظري اگر نانوپوسته ها به مقدار كافي گرم شوند مي توانند فقط سلول هاي سرطاني را از بين ببرند و به بافت هاي سالم آسيب نرسانند. البته مشكل است بدانيم آيا نانوپوسته ها در نهايت به تعهد خود عمل مي كنند يا نه. اين موضوع براي هزاران وسيله ريز ديگري نيز مطرح است كه براي كاربرد در پزشكي ساخته شده اند. محققان از نانوتكنولوژي در ساخت پايه هاي مصنوعي براي ايجاد بافت ها و اندام هاي مختلف نيز استفاده كرده اند. محققي به نام «ساموئل استوپ» روش نويني ابداع كرده است كه در آن سلول هاي استخواني را روي يك پايه مصنوعي رشد مي دهد. اين محقق از مولكول هاي مصنوعي استفاده كرده است كه با رشته هايي تركيب مي شوند كه اين رشته ها براي چسباندن به سلول هاي استخواني تمايل بالايي دارند. اين پايه هاي مصنوعي مي توانند فعاليت سلول ها را هدايت كنند و حتي مي توانند رشد آنها را كنترل كنند. محققان اميدوارند سرانجام بتوانند روش هايي بيابند تا نه فقط استخوان، غضروف و پوست بلكه اندام هاي پيچيده تر را با استفاده از پايه هاي مصنوعي بازسازي كنند. به نظر مي رسد برخي از اهدافي كه امروزه در حال تحقق هستند در آينده اي نزديك توسط پزشكان به كار گرفته شوند. جايگزيني قلب، كليه يا كبد با استفاده از پايه هاي مصنوعي شايد با فناوري كه در فيلم سفر دريايي شگفت انگيز نشان داده شد، متناسب نباشد اما اين تصور كه چنين درمان هايي در آينده اي نه چندان دور به واقعيت بپيوندند بسيار هيجان انگيز است. حتي هيجان انگيزتر اينكه اميد است محققان بتوانند با تقليد از فرآيندهاي طبيعي زيست شناختي، واحدهايي در مقياس نانو توليد كنند و از آنها در ساخت ساختارهاي بزرگ تر بهره گيرند. چنين ساختارهايي در نهايت مي توانند براي ترميم بافت هاي آسيب ديده و درمان بسياري از بيماري ها به كار روند. منبع :!!!! برای مشاهده محتوا ، لطفا ثبت نام کنید / وارد شوید !!!! Marichka20-07-2006, 11:14 AMنانوتكنولوژى، فناورى جديدى است كه در ارتباط با كاربرد ذرات ريز در حد نانومتر قرار مى گيرد. به نظر مى رسد كه فناورى نانو در آينده در زمينه هاى گوناگونى مانند مواد، تجهيزات و سيستم ها توسعه چشمگيرى پيدا كند. در بين اين زمينه ها نانومواد، هم در عرصه توليد دانش و هم در جنبه هاى عرضه تجارتى از رشد و گستردگى بالاترى برخوردار شده است. در يك دهه قبل ذرات نانو به علت جذابيتى كه در مطالعه خواص فيزيكى آنها وجود داشت بيشتر مورد توجه قرار گرفت. لذا به اين دليل اين مواد در حال حاضر به صورت تجارتى در دسترس قرار گرفته اند. ارگانيسم هاى حياتى از سلول هايى تشكيل شده اند كه به طور كلى داراى ديواره هايى به ضخامت ۱۰ ميكرومتر هستند. اما اجزاى اين سلول ها بسيار ريزتر و در حد نانومتر هستند. برخى از پروتئين هاى درون سلول تقريباً ۵ نانومتر هستند، يعنى در حد كوچكترين ذرات ناتو ساخت دست بشر هستند. از اين مقايسه ابعاد چنين مى توان برداشت كرد كه برخى پروتئين ها را مى توان تحت كنترل قرار داد و يا به بيانى از اين ذرات به عنوان پروب هاى سلولى براى تحريك پروتئين ها استفاده نمود. در واقع كشف حقايق مربوط به فرآيندهاى بيولوژيك درون سلول ها در ابعاد نانو از مهم ترين علل تمايل و توجه به فناورى نانو و تحقيق و توسعه در اين زمينه است. قطع نظر از تمايلى كه به مطالعه خواص فيزيكى ذرات نانو وجود دارد، توجه به اثرات مغناطيسى و خواص نورى مربوط به ذرات نانو از مهم ترين زمينه هاى كاربرد اين ذرات به حساب مى آيند. از طريق ذرات هيبريدشده نانو مى توان به ساختارهاى نوين با خواص جديد الكترونيكى، نورى _ الكترونيكى و ذرات هوشمند دست يافت. در اينجا در ابتدا به سابقه و كاربرد قبلى ذرات نانو در علوم زيستى و پزشكى مى پردازيم و سپس سعى مى نماييم تا تلاش هايى كه در اين زمينه در دست است عرضه شود و سپس به امكان رسيدن فرآورده هاى نانو به بازار مصرف خواهيم پرداخت. • كاربردهاى ذرات نانو در اينجا به برخى از كاربردهاى اين نوع ذرات در علوم زيستى و پزشكى اشاره مى شود. برخى از مهمترين آنها عبارتند از: كاربرد در داروسازى و ژن درمانى، تهيه ماركرهاى فلورسانس بيولوژيك، رديابى بيولوژيك عوامل بيمارى زا، رديابى پروتئين ها، پروب نمودن ساختار DNA، مهندسى بافت، نابود كردن تومورها از طريق گرمايش سلولى (hyper thermia)، جداسازى و خالص نمودن مولكول هاى زيستى و سلول ها، ازدياد كنتراست (زمينه سازى) در تصويربردارى پزشكى (MRI) و نهايتاً مطالعه سرعت رفتارهاى سلولى و Phago-kinetic. همان طور كه اشاره شد توليد ذرات نانو در ابعاد پروتئين هاى سلولى سبب شده است تا از آنها به عنوان ماركرهاى زيستى استفاده شود. البته اندازه ذره براى موادى كه مى بايست در سيستم هاى بيولوژيك وارد و تاثيرگذار باشند شرط اول مطالعه است. لذا براى تماس موثر و تداخل با هدف هاى بيولوژيك و يا پوشش دادن مولكول هاى زيستى به منظور طراحى آنها به عنوان هدف هاى غيرآلى _ زيستى مى بايستى ذرات نانو را به طرز موثرى تهيه كرد تا قابليت برقرار نمودن اين نوع تداخلات و يا چسبيده شدن را داشته باشد. مثال اين نوع فعاليت ها در پوشش دادن آنتى بادى ها، بيوپليمرهاى شبيه كلاژن و يا پوشش دادن به ذرات ريزى كه مانند بيومواد عمل نمايند است. در عرصه فعال نمودن خواص نورى ذرات بيولوژيك، ذرات نانو مى بايستى كه توانمندى تغيير خواص نورى بيومواد را آنچنان داشته باشند تا بتوانند آنها را از نظر خواص فلورسانسى قابل رديابى نمايند. در هر صورت ذرات نانو مى توانند در تشخيص شكل سلول ها، رديابى فرآيند هاى سيگنالينگ، عمل آنتى ژن ها و به عنوان عوامل قابل اتصال (linkers) در علوم سلولى به كار برده شوند، غالباً نانو- ذرات به صورت يك هسته تشكيل دهنده از مواد بيولوژيك كه سطح آن با مواد ساده و يا تركيبات غير آلى و بيوپليمرى پوشش داده شود تشكيل شده است. همچنين شكل ذرات نانو بيولوژيك مى تواند به صورت يك ريز ذره پوشش داده شده با يك غشا و يا لايه از مواد موثر وجود داشته باشد. ذرات به صورت كروى، استوانه اى، ديسك مانند و يا فرم هاى ديگرى مى تواند باشد. در مواردى كه ميزان نفوذ به درون لايه و غشاى خاصى مطرح باشد، سايز ذره و يا نوع توزيع ذرات نيز مى بايستى متناسب با جنبه كاربردى آن باشد. زمانى كه كنترل اندازه ذرات توسط روش هاى دقيقى مانند روش quantum- sized effects مى بايستى اندازه گيرى شود، سايز ذرات و نوع توزيع اندازه ذرات آن بسيار مهم خواهد بود. به طورى كه كنترل معدل اندازه ذرات مناسب و توزيع بسيار نزديك به هم سايز ذرات سبب نشر نور فلورسانس در يك باند باريك و بسيار قوى و حاصل جذب طول موج هاى مختلف در پهنه وسيع ترى از انواع طول موج ها مى شود. اين نوع توزيع مناسب و يكنواختى اندازه ذرات در تشخيص بيوماركرها از طريق ايجاد رنگ هاى مشخص كمك مى كند. در هر صورت هسته ذرات نانو مى تواند از لايه هاى مختلفى تشكيل شود و لايه هاى داراى خواص مغناطيسى و Luminescent كه هر دو در رديابى و تشخيص ذرات نانو كاربرد دارند به كار برده شوند. غالباً هسته ذرات نانو توسط پوشش هاى تك لايه اى از مواد غير فعالى مانند سيليكا پوشش داده مى شوند. مواد آلى مختلفى را مى توان روى اين سطوح سيليكايى سوار نمود، همچنين مى توان با نشاندن ساير مواد زيست سازگار بر روى اين سطوح آنها را به منظور خاص اصلاح ساختارى نمود. در هر صورت نشاندن و سوار كردن ساير Linker ها در اين موارد متداول است. در حال حاضر گروه هاى مختلفى از مواد وجود دارند كه بر روى سطح نانو- ذرات قابل سوار شدن هستند. آنتى بادى ها، مواد فلوروژنيك و ساير تركيبات زيست سازگار از اين قبيل هستند. • نوآورى هاى جديد «مهندسى بافت» جدار طبيعى استخوان ها داراى ضخامتى به ميزان ۱۰۰ نامتر است. اگر سطح يك ايمپلنت استخوان مصنوعى صاف و يكنواخت باشد، بدن آن را بعد از پيوند پس مى زند و نمى پذيرد. لذا سعى مى شود تا سطح نرم و صاف ايمپلنت استخوان هاى مصنوعى طورى همگون با فضاى مجوف بافت طبيعى تهيه شود. اين نوع طراحى سبب تماس كمتر بافت ايمپلنت با بافت اصلى بدن مى گردد و لذا احتمال نپذيرفتن پيوند كاهش مى يابد. در جراحى ها و استفاده از پروتز زانو و لگن نشان داده شده است كه با ايجاد ناهموارى هايى در ابعاد نانو در سطح ايمپلنت امكان ايجاد حالت تحريك استئوبلاست ها و يا پس زدن پروتز كاملاً كاهش مى يابد. استئوبلاست ها سلول هاى استخوان مسئول رشد و نمو استخوان ها هستند. اين اثرات با به كار بردن مواد بيوپليمرى، سراميكى و مواد فلزى مورد تجربه واقع شده است. در آزمايشگاه توانسته اند بيش از ۹۰ درصد سلول هاى استخوانى انسان را با مواد فلزى نانو همراه نمايند. اما در عمل نمى توان بيش از ۵۰ درصد سلول ها را با مواد نانو همراه نمود. اين يافته ها سبب خواهد شد تا در اعمال جراحى تعويض زانو و استخوان لگن از ايمپلنت هاى با طول اثر بيشتر و ماندگارى بالاتر استفاده شود. تيتانيوم يك ماده كاملاً شناخته شده اى است كه در ارتوپدى و دندانپزشكى كاربرد دارد. اين ماده به علت سبك بودن با قابليت مقاومت بالايى كه در برابر شكستگى دارد براى سوار شدن روى استخوان ها مناسب است. اما متاسفانه معايبى نيز دارد. در عوض آپاتيت ماده اى است كه كاملاً بيواكتيو است و به استخوان نيز به راحتى متصل مى شود. لذا در گذشته تلاش ها و تكنيك هاى زيادى براى پوشش دادن تيتانيوم با آپاتيت انجام شده است. البته اين نوع مواد حاصل از پوشش دادن ها نيز خود از عدم مزيت هايى مانند عدم ضخامت يكنواخت پوشش آن و عدم مقاومت در برابر شكستگى ها برخوردار است. ساختار متخلخل و مجوف پروتز ها براى انتقال مواد لازم براى رشد سلول ها ضرورى به نظر مى رسد، استخوان به طور طبيعى يك ماده نانوكامپوزيتى است كه از كريستال هاى هيدروكسى آپاتيت درون يك ماتريكس آلى و سرشار از كلاژن تشكيل شده است. خوشبختانه جنس استخوان طورى است كه در واقع محكم و داراى خواص پلاستيك است و اين امر سبب مى شود تا در صدمات مكانيكى قابليت ترميم را داشته باشد. هنوز مكانيسم دقيق عملكرد نانومواد كه دقيقاً شبيه استخوان عمل نمايند به طور مشخص روشن نيست. نوعى مواد تلفيق شده ذرات سراميكى و پلى متيل متاآكريلات به ص� سایت ما را در گوگل محبوب کنید با کلیک روی دکمه ای که در سمت چپ این منو با عنوان +1 قرار داده شده شما به این سایت مهر تأیید میزنید و به دوستانتان در صفحه جستجوی گوگل دیدن این سایت را پیشنهاد میکنید که این امر خود باعث افزایش رتبه سایت در گوگل میشود




این صفحه را در گوگل محبوب کنید

[ارسال شده از: سایت ریسک]
[مشاهده در: www.ri3k.eu]
[تعداد بازديد از اين مطلب: 550]

bt

اضافه شدن مطلب/حذف مطلب




-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن