تور لحظه آخری
امروز : چهارشنبه ، 14 آذر 1403    احادیث و روایات:  امام صادق (ع):همه خوبى‏ها و بدى‏ها در مقابل توست و هرگز خوبى و بدى واقعى را جز در آخرت نمى‏بينى...
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

صرافی ارکی چنج

صرافی rkchange

سایبان ماشین

دزدگیر منزل

تشریفات روناک

اجاره سند در شیراز

قیمت فنس

armanekasbokar

armanetejarat

صندوق تضمین

Future Innovate Tech

پی جو مشاغل برتر شیراز

آراد برندینگ

خرید یخچال خارجی

موسسه خیریه

واردات از چین

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

طراحی سایت تهران سایت

irspeedy

درج اگهی ویژه

تعمیرات مک بوک

دانلود فیلم هندی

قیمت فرش

درب فریم لس

زانوبند زاپیامکس

روغن بهران بردبار ۳۲۰

قیمت سرور اچ پی

خرید بلیط هواپیما

بلیط اتوبوس پایانه

تعمیرات پکیج کرج

لیست قیمت گوشی شیائومی

خرید فالوور

پوستر آنلاین

بهترین وکیل کرج

بهترین وکیل تهران

خرید اکانت تریدینگ ویو

خرید از چین

خرید از چین

تجهیزات کافی شاپ

ساختمان پزشکان

محصولات فوراور

خرید سرور اچ پی ماهان شبکه

دوربین سیمکارتی چرخشی

همکاری آی نو و گزینه دو

کاشت ابرو طبیعی و‌ سریع

الک آزمایشگاهی

الک آزمایشگاهی

خرید سرور مجازی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

لوله و اتصالات آذین

قرص گلوریا

نمایندگی دوو در کرج

خرید نهال سیب

وکیل ایرانی در استانبول

وکیل ایرانی در استانبول

وکیل ایرانی در استانبول

رفع تاری و تشخیص پلاک

پرگابالین

دوره آموزش باریستا

مهاجرت به آلمان

بهترین قالیشویی تهران

بورس کارتریج پرینتر در تهران

تشریفات روناک

نوار اخطار زرد رنگ

ثبت شرکت فوری

تابلو برق

خودارزیابی چیست

 






آمار وبسایت

 تعداد کل بازدیدها : 1837962579




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

رهيافتي به بعد چهارم


واضح آرشیو وب فارسی:فان پاتوق: رهيافتي به بعد چهارم
خط d را در صفحه در نظر بگيريد. اگر O نقطهي دلخواهي بر d و نقاط

به ترتيب قرينهي A,B نسبت به O باشند، آيا ميتوان AB را با حركت دادن روي d بر

منطبق كرد؟


قطعاً پاسخ منفي است. امّا با دوران AB حول O در صفحه، ميتوان آن را بر

منطبق كرد يعني با رفتن به بعدي بالاتر. [ خط يك بعدي و صفحه دو بعدي است]
خط d و مربّع ABCD در صفحه مفروضاند. اگر نقاط

به ترتيب قرينهي A,B,C,D نسبت به d باشند، آيا ميتوان ABCD را با حركت دادن در صفحه بر

منطبق كرد؟



قطعاً پاسخ منفي است. امّا با دوران ABCD حول d در فضا، ميتوان آن را بر

منطبق كرد يعني با رفتن به بعدي بالاتر [صفحه دو بعدي و فضا سه بعدي است]
اكنون فرض كنيد روبهروي يك آينهي قدّي ايستادهايد و به تصوير و فضاي اطراف خود،در آن مينگريد. سؤال اين است كه آيا با حركت در فضا ميتوانيد بر تصوير آينهاي خود منطبق شويد؟
قطعاً پاسخ منفي است. پس طبق روال فوق بايد به بعد بالاتر برويم، يعني بعد چهارم! امّا فضاي چهاربعدي چگونه است؟

معرّفي فضاي چهاربعدي:
يك چهارتايي مرتب از اعداد حقيقي (x,y,z,t) يك نقطه از فضاي چهاربعدي ناميده ميشود. فضاي چهاربعدي داراي چهار محور مختصات است:



در فضاي چهاربعدي علاوه بر محور مختصات، صفحه ي مختصات نيز داريم؛ اينها صفحاتي هستند كه از دو محور مختصات ميگذرند.
فضاي چهار بعدي داراي 6 صفحه ي مختصات است:



به وضوح هر يك از اين صفحات از دو محور مختصات ميگذرند.
امّا كار به همين جا ختم نميشود، در فضاي چهاربعدي، مجموعهاي چون صفحه ي مختصات سه بعدي نيز داريم و آن عبارت است از مجموعهي نقاطي كه يك مختص آنها صفر و سه مختص ديگر ميتوانند عددي دلخواه باشند. فضاي چهاربعدي داراي چهارصفحهي مختصات سه بعدي است:


به وضوح هر يك از اين صفحات مختصات سه بعدي از سه محور مختصات ميگذرند و محل تلاقي هر دو تاي آنها، يك صفحهي مختصات است.
در اين فضا، فاصلهي بين دو نقطهي

به صورت زير تعريف ميشود:



و منظور از يك شكل هندسي، يك مجموعه از نقاط است.
اكنون پس از معرّفي فضاي چهاربعدي، جهت درك بهتر آن، ساختار شكل هندسي سادهاي چون مكعب واحد چهاربعدي را بررسي ميكنيم.
پيش از پرداختن به اين موضوع، بد نيست ساختار مكعب واحد سه بعدي را يك بار مرور كنيم.
مكعب واحد سه بعدي عبارت است از

.
رأس: رأس اين مكعب عبارت است از نقاطي كه مختصهاي آنها 0 يا 1 هستند. مثلاً (1،0،0) يك رأس اين مكعب است. اين مكعب داراي 8 رأس است.
يال: يال اين مكعب عبارت است از مجموعه ي نقاطي كه دو مختص آنها 0 يا 1 بوده و مختص ديگر بين 0 و 1 تغيير ميكند.
مثلاً

يك يال اين مكعب است. اين مكعب داراي 12 يال است.
وجه: وجه اين مكعب عبارت است از مجموعه ي نقاطي كه يك مختص آنها 0 يا 1 بوده و دو مختص ديگر بين 0 و 1 تغيير ميكنند.
مثلاً

يك وجه اين مكعب است. اين مكعب داراي 6 وجه است. در شكل زير چگونگي ساختن مكعب واحد سه بعدي با استفاده از مدل گستردهاش را ملاحظه ميكنيد:





اكنون به بررسي ساختار مكعب واحد چهاربعدي ميپردازيم.
مكعب واحد چهاربعدي عبارت است از

.
رأس: رأس اين مكعب عبارت است از نقاطي كه مختصهاي آنها 0 يا 1 هستند. مثلاً (1،0،0،0) يك رأس اين مكعب است. اين مكعب داراي 16 رأس است.
يال: يال اين مكعب عبارت است از مجموعهي نقاطي كه سه مختص آنها 0 يا 1 و مختص باقيمانده بين 0 و 1 تغيير ميكند. مثلاً

يك يال اين مكعب است.
اين مكعب 32 يال دارد. [چرا؟]
وجه دو بعدي: وجه دو بعدي اين مكعب عبارت است از مجموعهي نقاطي كه دو مختص آنها 0 يا 1 و دو مختص ديگر بين 0 و 1 تغيير ميكنند. مثلاً

يك وجه دو بعدي اين مكعب است.
اين مكعب داراي 24 وجه دو بعدي است. [چرا؟]
وجه سه بعدي مكعب: وجه سه بعدي مكعب عبارت است از مجموعهي نقاطي كه يك مختص آنها 0 يا 1 و سه مختص ديگر بين 0 و 1 تغيير ميكنند.
مثلاً

يك وجه سه بعدي اين مكعب است. اين مكعب 8 وجه سه بعدي دارد.
در شكلهاي زير مكعب واحد چهاربعدي و چگونگي ساختن آن را با استفاده ازمدل گستردهاش ملاحظه ميكنيد:






سخن آخر اين كه يكي از كاربردهاي مهم اين فضا در معرفي فضاي مينكوفسكي در نظريه ي مشهور نسبيت مي باشد .






این صفحه را در گوگل محبوب کنید

[ارسال شده از: فان پاتوق]
[مشاهده در: www.funpatogh.com]
[تعداد بازديد از اين مطلب: 453]

bt

اضافه شدن مطلب/حذف مطلب




-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن