تبلیغات
تبلیغات متنی
محبوبترینها
بارشهای سیلآسا در راه است! آیا خانه شما آماده است؟
بارشهای سیلآسا در راه است! آیا خانه شما آماده است؟
قیمت انواع دستگاه تصفیه آب خانگی در ایران
نمایش جنگ دینامیت شو در تهران [از بیوگرافی میلاد صالح پور تا خرید بلیط]
9 روش جرم گیری ماشین لباسشویی سامسونگ برای از بین بردن بوی بد
ساندویچ پانل: بهترین گزینه برای ساخت و ساز سریع
خرید بیمه، استعلام و مقایسه انواع بیمه درمان ✅?
پروازهای مشهد به دبی چه زمانی ارزان میشوند؟
تجربه غذاهای فرانسوی در قلب پاریس بهترین رستورانها و کافهها
دلایل زنگ زدن فلزات و روش های جلوگیری از آن
خرید بلیط چارتر هواپیمایی ماهان _ ماهان گشت
صفحه اول
آرشیو مطالب
ورود/عضویت
هواشناسی
قیمت طلا سکه و ارز
قیمت خودرو
مطالب در سایت شما
تبادل لینک
ارتباط با ما
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
مطالب سایت سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون
آمار وبسایت
تعداد کل بازدیدها :
1836292774
Engineering Mathematics
واضح آرشیو وب فارسی:سایت ریسک: mir@07-02-2007, 09:50 AMhttp://ec1.images-amazon.com/images/P/0750665750.01._BO2,204,203,200_PIsitb-dp-500-arrow,TopRight,45,-64_OU01_AA 240_SH20_SCLZZZZZZZ_.jpg Contents Preface xi Part 1 Number and Algebra 1 1 Revision of fractions, decimals and percentages 1 1.1 Fractions 1 1.2 Ratio and proportion 3 1.3 Decimals 4 1.4 Percentages 7 2 Indices and standard form 9 2.1 Indices 9 2.2 Worked problems on indices 9 2.3 Further worked problems on indices 11 2.4 Standard form 13 2.5 Worked problems on standard form 13 2.6 Further worked problems on standard form 14 3 Computer numbering systems 16 3.1 Binary numbers 16 3.2 Conversion of binary to decimal 16 3.3 Conversion of decimal to binary 17 3.4 Conversion of decimal to binary via octal 18 3.5 Hexadecimal numbers 20 4 Calculations and evaluation of formulae 24 4.1 Errors and approximations 24 4.2 Use of calculator 26 4.3 Conversion tables and charts 28 4.4 Evaluation of formulae 30 Assignment 1 33 5 Algebra 34 5.1 Basic operations 34 5.2 Laws of Indices 36 5.3 Brackets and factorisation 38 5.4 Fundamental laws and precedence 40 5.5 Direct and inverse proportionality 42 6 Further algebra 44 6.1 Polynomial division 44 6.2 The factor theorem 46 6.3 The remainder theorem 48 7 Partial fractions 51 7.1 Introduction to partial fractions 51 7.2 Worked problems on partial fractions with linear factors 51 7.3 Worked problems on partial fractions with repeated linear factors 54 7.4 Worked problems on partial fractions with quadratic factors 55 8 Simple equations 57 8.1 Expressions, equations and identities 57 8.2 Worked problems on simple equations 57 8.3 Further worked problems on simple equations 59 8.4 Practical problems involving simple equations 61 8.5 Further practical problems involving simple equations 62 Assignment 2 64 9 Simultaneous equations 65 9.1 Introduction to simultaneous equations 65 9.2 Worked problems on simultaneous equations in two unknowns 65 9.3 Further worked problems on simultaneous equations 67 9.4 More difficult worked problems on simultaneous equations 69 9.5 Practical problems involving simultaneous equations 70 10 Transposition of formulae 74 10.1 Introduction to transposition of formulae 74 10.2 Worked problems on transposition of formulae 74 10.3 Further worked problems on transposition of formulae 75 10.4 Harder worked problems on transposition of formulae 77 11 Quadratic equations 80 11.1 Introduction to quadratic equations 80 11.2 Solution of quadratic equations by factorisation 80 11.3 Solution of quadratic equations by ‘completing the square’ 82 11.4 Solution of quadratic equations by formula 84 11.5 Practical problems involving quadratic equations 85 11.6 The solution of linear and quadratic equations simultaneously 87 12 Logarithms 89 12.1 Introduction to logarithms 89 12.2 Laws of logarithms 89 12.3 Indicial equations 92 12.4 Graphs of logarithmic functions 93 Assignment 3 94 13 Exponential functions 95 13.1 The exponential function 95 13.2 Evaluating exponential functions 95 13.3 The power series for ex 96 13.4 Graphs of exponential functions 98 13.5 Napierian logarithms 100 13.6 Evaluating Napierian logarithms 100 13.7 Laws of growth and decay 102 14 Number sequences 106 14.1 Arithmetic progressions 106 14.2 Worked problems on arithmetic progression 106 14.3 Further worked problems on arithmetic progressions 107 14.4 Geometric progressions 109 14.5 Worked problems on geometric progressions 110 14.6 Further worked problems on geometric progressions 111 14.7 Combinations and permutations 112 15 The binomial series 114 15.1 Pascal’s triangle 114 15.2 The binomial series 115 15.3 Worked problems on the binomial series 115 15.4 Further worked problems on the binomial series 117 15.5 Practical problems involving the binomial theorem 120 16 Solving equations by iterative methods 123 16.1 Introduction to iterative methods 123 16.2 The Newton–Raphson method 123 16.3 Worked problems on the Newton–Raphson method 123 Assignment 4 126 Multiple choice questions on chapters 1 to 16 127 Part 2 Mensuration 131 17 Areas of plane figures 131 17.1 Mensuration 131 17.2 Properties of quadrilaterals 131 17.3 Worked problems on areas of plane figures 132 17.4 Further worked problems on areas of plane figures 135 17.5 Worked problems on areas of composite figures 137 17.6 Areas of similar shapes 138 18 The circle and its properties 139 18.1 Introduction 139 18.2 Properties of circles 139 18.3 Arc length and area of a sector 140 18.4 Worked problems on arc length and sector of a circle 141 18.5 The equation of a circle 143 19 Volumes and surface areas of common solids 145 19.1 Volumes and surface areas of regular solids 145 19.2 Worked problems on volumes and surface areas of regular solids 145 19.3 Further worked problems on volumes and surface areas of regular solids 147 19.4 Volumes and surface areas of frusta of pyramids and cones 151 19.5 The frustum and zone of a sphere 155 19.6 Prismoidal rule 157 19.7 Volumes of similar shapes 159 20 Irregular areas and volumes and mean values of waveforms 161 20.1 Areas of irregular figures 161 20.2 Volumes of irregular solids 163 20.3 The mean or average value of a waveform 164 Assignment 5 168 Part 3 Trigonometry 171 21 Introduction to trigonometry 171 21.1 Trigonometry 171 21.2 The theorem of Pythagoras 171 21.3 Trigonometric ratios of acute angles 172 21.4 Fractional and surd forms of trigonometric ratios 174 21.5 Solution of right-angled triangles 175 21.6 Angles of elevation and depression 176 21.7 Evaluating trigonometric ratios of any angles 178 21.8 Trigonometric approximations for small angles 181 22 Trigonometric waveforms 182 22.1 Graphs of trigonometric functions 182 22.2 Angles of any magnitude 182 22.3 The production of a sine and cosine wave 185 22.4 Sine and cosine curves 185 22.5 Sinusoidal form A sinωt š ˛ 189 22.6 Waveform harmonics 192 23 Cartesian and polar co-ordinates 194 23.1 Introduction 194 23.2 Changing from Cartesian into polar co-ordinates 194 23.3 Changing from polar into Cartesian co-ordinates 196 23.4 Use of R ! P and P ! R functions on calculators 197 Assignment 6 198 24 Triangles and some practical applications 199 24.1 Sine and cosine rules 199 24.2 Area of any triangle 199 24.3 Worked problems on the solution of triangles and their areas 199 24.4 Further worked problems on the solution of triangles and their areas 201 24.5 Practical situations involving trigonometry 203 24.6 Further practical situations involving trigonometry 205 25 Trigonometric identities and equations 208 25.1 Trigonometric identities 208 25.2 Worked problems on trigonometric identities 208 25.3 Trigonometric equations 209 25.4 Worked problems (i) on trigonometric equations 210 25.5 Worked problems (ii) on trigonometric equations 211 25.6 Worked problems (iii) on trigonometric equations 212 25.7 Worked problems (iv) on trigonometric equations 212 26 Compound angles 214 26.1 Compound angle formulae 214 26.2 Conversion of a sin ωt C b cos ωt into R sinωt C ˛) 216 26.3 Double angles 220 26.4 Changing products of sines and cosines into sums or differences 221 26.5 Changing sums or differences of sines and cosines into products 222 Assignment 7 224 Multiple choice questions on chapters 17 to 26 225 Part 4 Graphs 231 27 Straight line graphs 231 27.1 Introduction to graphs 231 27.2 The straight line graph 231 27.3 Practical problems involving straight line graphs 237 28 Reduction of non-linear laws to linear form 243 28.1 Determination of law 243 28.2 Determination of law involving logarithms 246 29 Graphs with logarithmic scales 251 29.1 Logarithmic scales 251 29.2 Graphs of the form y D axn 251 29.3 Graphs of the form y D abx 254 29.4 Graphs of the form y D aekx 255 30 Graphical solution of equations 258 30.1 Graphical solution of simultaneous equations 258 30.2 Graphical solution of quadratic equations 259 30.3 Graphical solution of linear and quadratic equations simultaneously 263 30.4 Graphical solution of cubic equations 264 31 Functions and their curves 266 31.1 Standard curves 266 31.2 Simple transformations 268 31.3 Periodic functions 273 31.4 Continuous and discontinuous functions 273 31.5 Even and odd functions 273 31.6 Inverse functions 275 Assignment 8 279 Part 5 Vectors 281 32 Vectors 281 32.1 Introduction 281 32.2 Vector addition 281 32.3 Resolution of vectors 283 32.4 Vector subtraction 284 33 Combination of waveforms 287 33.1 Combination of two periodic functions 287 33.2 Plotting periodic functions 287 33.3 Determining resultant phasors by calculation 288 Part 6 Complex Numbers 291 34 Complex numbers 291 34.1 Cartesian complex numbers 291 34.2 The Argand diagram 292 34.3 Addition and subtraction of complex numbers 292 34.4 Multiplication and division of complex numbers 293 34.5 Complex equations 295 34.6 The polar form of a complex number 296 34.7 Multiplication and division in polar form 298 34.8 Applications of complex numbers 299 35 De Moivre’s theorem 303 35.1 Introduction 303 35.2 Powers of complex numbers 303 35.3 Roots of complex numbers 304 Assignment 9 306 Part 7 Statistics 307 36 Presentation of statistical data 307 36.1 Some statistical terminology 307 36.2 Presentation of ungrouped data 308 36.3 Presentation of grouped data 312 37 Measures of central tendency and dispersion 319 37.1 Measures of central tendency 319 37.2 Mean, median and mode for discrete data 319 37.3 Mean, median and mode for grouped data 320 37.4 Standard deviation 322 37.5 Quartiles, deciles and percentiles 324 38 Probability 326 38.1 Introduction to probability 326 38.2 Laws of probability 326 38.3 Worked problems on probability 327 38.4 Further worked problems on probability 329 38.5 Permutations and combinations 331 39 The binomial and Poisson distribution 333 39.1 The binomial distribution 333 39.2 The Poisson distribution 336 Assignment 10 339 40 The normal distribution 340 40.1 Introduction to the normal distribution 340 40.2 Testing for a normal distribution 344 41 Linear correlation 347 41.1 Introduction to linear correlation 347 41.2 The product-moment formula for determining the linear correlation coefficient 347 41.3 The significance of a coefficient of correlation 348 41.4 Worked problems on linear correlation 348 42 Linear regression 351 42.1 Introduction to linear regression 351 42.2 The least-squares regression lines 351 42.3 Worked problems on linear regression 352 43 Sampling and estimation theories 356 43.1 Introduction 356 43.2 Sampling distributions 356 43.3 The sampling distribution of the means 356 43.4 The estimation of population parameters based on a large sample size 359 43.5 Estimating the mean of a population based on a small sample size 364 Assignment 11 368 Multiple choice questions on chapters 27 to 43 369 Part 8 Differential Calculus 375 44 Introduction to differentiation 375 44.1 Introduction to calculus 375 44.2 Functional notation 375 44.3 The gradient of a curve 376 44.4 Differentiation from first principles 377 44.5 Differentiation of y D axn by the general rule 379 44.6 Differentiation of sine and cosine functions 380 44.7 Differentiation of eax and ln ax 382 45 Methods of differentiation 384 45.1 Differentiation of common functions 384 45.2 Differentiation of a product 386 45.3 Differentiation of a quotient 387 45.4 Function of a function 389 45.5 Successive differentiation 390 46 Some applications of differentiation 392 46.1 Rates of change 392 46.2 Velocity and acceleration 393 46.3 Turning points 396 46.4 Practical problems involving maximum and minimum values 399 46.5 Tangents and normals 403 46.6 Small changes 404 Assignment 12 406 Part 9 Integral Calculus 407 47 Standard integration 407 47.1 The process of integration 407 47.2 The general solution of integrals of the form axn 407 47.3 Standard integrals 408 47.4 Definite integrals 411 48 Integration using algebraic substitutions 414 48.1 Introduction 414 48.2 Algebraic substitutions 414 48.3 Worked problems on integration using algebraic substitutions 414 48.4 Further worked problems on integration using algebraic substitutions 416 48.5 Change of limits 416 49 Integration using trigonometric substitutions 418 49.1 Introduction 418 49.2 Worked problems on integration of sin2 x, cos2 x, tan2 x and cot2 x 418 49.3 Worked problems on powers of sines and cosines 420 49.4 Worked problems on integration of products of sines and cosines 421 49.5 Worked problems on integration using the sin substitution 422 49.6 Worked problems on integration using the tan substitution 424 Assignment 13 425 50 Integration using partial fractions 426 50.1 Introduction 426 50.2 Worked problems on integration using partial fractions with linear factors 426 50.3 Worked problems on integration using partial fractions with repeated linear factors 427 50.4 Worked problems on integration using partial fractions with quadratic factors 428 51 The t = q 2 substitution 430 51.1 Introduction 430 51.2 Worked problems on the t D tan 2 substitution 430 51.3 Further worked problems on the t D tan 2 substitution 432 52 Integration by parts 434 52.1 Introduction 434 52.2 Worked problems on integration by parts 434 52.3 Further worked problems on integration by parts 436 53 Numerical integration 439 53.1 Introduction 439 53.2 The trapezoidal rule 439 53.3 The mid-ordinate rule 441 53.4 Simpson’s rule 443 Assignment 14 447 54 Areas under and between curves 448 54.1 Area under a curve 448 54.2 Worked problems on the area under a curve 449 54.3 Further worked problems on the area under a curve 452 54.4 The area between curves 454 55 Mean and root mean square values 457 55.1 Mean or average values 457 55.2 Root mean square values 459 56 Volumes of solids of revolution 461 56.1 Introduction 461 56.2 Worked problems on volumes of solids of revolution 461 56.3 Further worked problems on volumes of solids of revolution 463 57 Centroids of simple shapes 466 57.1 Centroids 466 57.2 The first moment of area 466 57.3 Centroid of area between a curve and the x-axis 466 57.4 Centroid of area between a curve and the y-axis 467 57.5 Worked problems on centroids of simple shapes 467 57.6 Further worked problems on centroids of simple shapes 468 57.7 Theorem of Pappus 471 58 Second moments of area 475 58.1 Second moments of area and radius of gyration 475 58.2 Second moment of area of regular sections 475 58.3 Parallel axis theorem 475 58.4 Perpendicular axis theorem 476 58.5 Summary of derived results 476 58.6 Worked problems on second moments of area of regular sections 476 58.7 Worked problems on second moments of areas of composite areas 480 Assignment 15 482 Part 10 Further Number and Algebra 483 59 Boolean algebra and logic circuits 483 59.1 Boolean algebra and switching circuits 483 59.2 Simplifying Boolean expressions 488 59.3 Laws and rules of Boolean algebra 488 59.4 De Morgan’s laws 490 59.5 Karnaugh maps 491 59.6 Logic circuits 495 59.7 Universal logic circuits 500 60 The theory of matrices and determinants 504 60.1 Matrix notation 504 60.2 Addition, subtraction and multiplication of matrices 504 60.3 The unit matrix 508 60.4 The determinant of a 2 by 2 matrix 508 60.5 The inverse or reciprocal of a 2 by 2 matrix 509 60.6 The determinant of a 3 by 3 matrix 510 60.7 The inverse or reciprocal of a 3 by 3 matrix 511 61 The solution of simultaneous equations by matrices and determinants 514 61.1 Solution of simultaneous equations by matrices 514 61.2 Solution of simultaneous equations by determinants 516 61.3 Solution of simultaneous equations using Cramers rule 520 Assignment 16 521 Multiple choice questions on chapters 44–61 522 Answers to multiple choice questions 526 Index 527 !!!! برای مشاهده محتوا ، لطفا ثبت نام کنید / وارد شوید !!!! کلاً 5.2 مگابایت hTtp://qsmile.com/qsimages/118.gif Babak_King07-02-2007, 07:01 PMسلام امير جان اول كاربر فعال شدنت رو تبريك ميگم و ممنون بابته كتاباي خوبت معرفي كتاب در زير شاخه هاي مرتبط تشكر. سایت ما را در گوگل محبوب کنید با کلیک روی دکمه ای که در سمت چپ این منو با عنوان +1 قرار داده شده شما به این سایت مهر تأیید میزنید و به دوستانتان در صفحه جستجوی گوگل دیدن این سایت را پیشنهاد میکنید که این امر خود باعث افزایش رتبه سایت در گوگل میشود
این صفحه را در گوگل محبوب کنید
[ارسال شده از: سایت ریسک]
[مشاهده در: www.ri3k.eu]
[تعداد بازديد از اين مطلب: 478]
-
گوناگون
پربازدیدترینها