تور لحظه آخری
امروز : شنبه ، 10 آذر 1403    احادیث و روایات:  امام علی (ع):نماز قلعه و دژ محکمی است که نمازگزار را از حملات شیطان نگاه می دارد.
سرگرمی سبک زندگی سینما و تلویزیون فرهنگ و هنر پزشکی و سلامت اجتماع و خانواده تصویری دین و اندیشه ورزش اقتصادی سیاسی حوادث علم و فناوری سایتهای دانلود گوناگون شرکت ها

تبلیغات

تبلیغات متنی

صرافی ارکی چنج

صرافی rkchange

سایبان ماشین

دزدگیر منزل

تشریفات روناک

اجاره سند در شیراز

قیمت فنس

armanekasbokar

armanetejarat

صندوق تضمین

Future Innovate Tech

پی جو مشاغل برتر شیراز

لوله بازکنی تهران

آراد برندینگ

خرید یخچال خارجی

موسسه خیریه

واردات از چین

حمية السكري النوع الثاني

ناب مووی

دانلود فیلم

بانک کتاب

دریافت دیه موتورسیکلت از بیمه

طراحی سایت تهران سایت

irspeedy

درج اگهی ویژه

تعمیرات مک بوک

قیمت فرش

درب فریم لس

زانوبند زاپیامکس

روغن بهران بردبار ۳۲۰

قیمت سرور اچ پی

خرید بلیط هواپیما

بلیط اتوبوس پایانه

قیمت سرور dl380 g10

تعمیرات پکیج کرج

لیست قیمت گوشی شیائومی

خرید فالوور

بهترین وکیل کرج

بهترین وکیل تهران

خرید اکانت تریدینگ ویو

خرید از چین

خرید از چین

تجهیزات کافی شاپ

محصولات فوراور

خرید سرور اچ پی ماهان شبکه

دوربین سیمکارتی چرخشی

همکاری آی نو و گزینه دو

کاشت ابرو طبیعی و‌ سریع

الک آزمایشگاهی

الک آزمایشگاهی

خرید سرور مجازی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

قیمت بالابر هیدرولیکی

لوله و اتصالات آذین

قرص گلوریا

نمایندگی دوو در کرج

خرید نهال سیب

وکیل ایرانی در استانبول

وکیل ایرانی در استانبول

وکیل ایرانی در استانبول

رفع تاری و تشخیص پلاک

پرگابالین

 






آمار وبسایت

 تعداد کل بازدیدها : 1835778925




هواشناسی

نرخ طلا سکه و  ارز

قیمت خودرو

فال حافظ

تعبیر خواب

فال انبیاء

متن قرآن



اضافه به علاقمنديها ارسال اين مطلب به دوستان آرشيو تمام مطالب
archive  refresh

سری فوریه


واضح آرشیو وب فارسی:فان پاتوق: [IMG]http://mathworld.wolfram.com/images/eps-gif/FourierSerie***amples_800.gif[/IMG]سری فوریه عبارت است از بسط تابع تناوبی

در قالب جملاتی از جمع نامتناهی کسینوس ها و سینوس ها. در واقع سری فوریه بر کاربرد روابط تعامد (orthogonality relationships) توابع سینوسی و کسینوسی تاکید دارد. محاسبه و مطالعه ی سری های فوریه موسوم به آنالیز هارمونیک (harmonic analysis) می باشد که به عنوان یک روش بسیار سودمند برای تفکیک یک تابع تناوبی دلخواه به مجموعه ای از جملات ساده بوده که به راحتی می توان آنها را فهمید، منحصرا حل کرد و دوباره با ترکیب آنها راه حل مساله ی اولیه را بدست آورد، یا اینکه یک تقریب مطلوب و مناسبی را برای آن تخمین زد. نمونه هایی از تقریب های متوالی برای توابع معمول در ریاضیات با استفاده از سری های فوریه در شکل بالا گرداوری شده است.
به ویژه از آن جایی که با توجه به اصل انطباق (برهم نهی) مجموع پاسخ های یک معادله ی دیفرانسیلی معمولی همگن خطی خود راه حل معادله ی اولیه محسوب می شوند، چنانچه بک چنین معادله ای را بتوان برای یک خم سینوسی یکتا حل کرد، آنگاه راه حل یک تابع دلخواه را می توان فورا با استفاده از توصیف تابع اولیه در قالب یک سری فوریه بدست آورد که متعاقبا این رویه منجر به فهم راه حل هر یک از مولفه های منتسب به خم سینوسی می گردد. این تکنیک حتی در برخی موارد خاص که سری فوریه محصور به یک شکل محدود و بسته است، به راه حل های تحلیلی نیز می انجامد.
هر مجموعه ای از توابعی که یک دستگاه متعامد (راست گوشه) کامل (complete orthogonal system) را تشکیل می دهند، یک سری فوریه ی تعمیم یافته (generalized Fourier series) متناظر دارند که شبیه به سری فوریه است. مثلاْ استفاده از تعامد ریشه های تابع بسل نوع اول (Bessel function of the first kind) به اصطلاح یک سری بسل ـ فوریه (Bessel function of the first kind) را بدست می دهد.
محاسبه ی سری فوریه (معمول) بر پایه ی اتحاد های انتگرالی زیر است:


































که

و

نماد دلتای کرونکر است:


با استفاده از متد سری فوریه تعمیم یافته (generalized Fourier series) سری فوریه ی معمول شامل جملات سینوسی و کسینوسی با قرار دادن

و

حاصل می شود. چون این توابع یک دستگاه متعامد کامل در بازه ی

را ایجاد می کنند، سری فوریه تابع

به صورت زیر داده می شود:


که




















و ... n=۱،۲،۳ توجه کنید که عامل a0 در فرم خاصی نوشته شده است که در قیاس با شکل عمومی سری فوریه تعمیم یافته می تواند تقارن نسبت به تعاریف an و bn را حفظ کند.
اگر یک تابع شرایط دیریشله (Dirichlet conditions) را تصدیق کند، سری فوریه تابع مزبور همگرا به تابع

می باشد که برابر با تابع اولیه در نقاط پیوستگی و یا میانگین دو حد در نقاط ناپیوستگی است، یعنی




به عنوان یک نتیجه، در نزدیکی ناپیوستگی ها، یک رشته ی حلقوی موسوم به پدیده ی گیبس (Gibbs phenomenon) می تواند اتفاق بیفتد که در شکل بالا به وضوح این مطلب قابل تایید است.






این صفحه را در گوگل محبوب کنید

[ارسال شده از: فان پاتوق]
[مشاهده در: www.funpatogh.com]
[تعداد بازديد از اين مطلب: 4415]

bt

اضافه شدن مطلب/حذف مطلب




-


گوناگون

پربازدیدترینها
طراحی وب>


صفحه اول | تمام مطالب | RSS | ارتباط با ما
1390© تمامی حقوق این سایت متعلق به سایت واضح می باشد.
این سایت در ستاد ساماندهی وزارت فرهنگ و ارشاد اسلامی ثبت شده است و پیرو قوانین جمهوری اسلامی ایران می باشد. لطفا در صورت برخورد با مطالب و صفحات خلاف قوانین در سایت آن را به ما اطلاع دهید
پایگاه خبری واضح کاری از شرکت طراحی سایت اینتن